Let be any number field, and let be any -extension. We construct a natural -morphism from into a special subset of , the dual of the -vector space of continuously differentiable functions from . We apply the results to the problem of interpolating Gauss sums attached to Dirichlet characters.
Soit un corps de nombres et une -extension. Nous construisons un -morphisme naturel de dans un sous-ensemble particulier de , le dual de l’espace vectoriel sur des fonctions continûment dérivables de . Nous appliquons les résultats au problème d’interpolation des sommes de Gauss attachées aux caractères de Dirichlet.
Revised:
Accepted:
Published online:
Keywords: distributions, $L$-functions, Gauss sums, class group
@article{JTNB_2017__29_1_29_0, author = {Timothy All and Bradley Waller}, title = {On a construction of $C^1(\mathbb{Z}_p)$ functionals from $\mathbb{Z}_p$-extensions of algebraic number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {29--50}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {1}, year = {2017}, doi = {10.5802/jtnb.968}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.968/} }
TY - JOUR AU - Timothy All AU - Bradley Waller TI - On a construction of $C^1(\mathbb{Z}_p)$ functionals from $\mathbb{Z}_p$-extensions of algebraic number fields JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 29 EP - 50 VL - 29 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.968/ DO - 10.5802/jtnb.968 LA - en ID - JTNB_2017__29_1_29_0 ER -
%0 Journal Article %A Timothy All %A Bradley Waller %T On a construction of $C^1(\mathbb{Z}_p)$ functionals from $\mathbb{Z}_p$-extensions of algebraic number fields %J Journal de théorie des nombres de Bordeaux %D 2017 %P 29-50 %V 29 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.968/ %R 10.5802/jtnb.968 %G en %F JTNB_2017__29_1_29_0
Timothy All; Bradley Waller. On a construction of $C^1(\mathbb{Z}_p)$ functionals from $\mathbb{Z}_p$-extensions of algebraic number fields. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 1, pp. 29-50. doi : 10.5802/jtnb.968. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.968/
[1] On -adic annihilators of real ideal classes, J. Number Theory, Volume 133 (2013) no. 7, pp. 2324-2338 | DOI
[2] Duals, Proceedings of the Conference on -adic Analysis (Nijmegen, 1978) (Report), Volume 7806 (1978), pp. 1-15
[3] A Generalization of Volkenborn Integral, The Ohio State University, USA (2002) (Ph. D. Thesis)
[4] On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, Volume 16 (1694), pp. 42-82 | DOI
[5] On -adic -functions, Ann. of Math., Volume 89 (1969), pp. 198-205 | DOI
[6] Formal complex multiplication in local fields, Ann. of Math., Volume 81 (1965), pp. 380-387 | DOI
[7] Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer-Verlag, Berlin, 1999 (Translated from the 1992 German original)
[8] A course in -adic analysis, Graduate Texts in Mathematics, 198, Springer-Verlag, New York, 2000
[9] On the Stickelberger ideal and the circular units of an abelian field, Invent. Math., Volume 62 (1980/81) no. 2, pp. 181-234 | DOI
[10] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997
Cited by Sources: