
Timothy ALL et Bradley WALLER

On a construction of C1(Zp) functionals from Zp-extensions of algebraic
number fields
Tome 29, no 1 (2017), p. 29-50.

<http://jtnb.cedram.org/item?id=JTNB_2017__29_1_29_0>

© Société Arithmétique de Bordeaux, 2017, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous
quelque forme que ce soit pour tout usage autre que l’utilisation à
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://jtnb.cedram.org/item?id=JTNB_2017__29_1_29_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Journal de Théorie des Nombres
de Bordeaux 29 (2017), 29–50

On a construction of C1(Zp) functionals from
Zp-extensions of algebraic number fields

par Timothy ALL et Bradley WALLER

Résumé. Soit k un corps de nombres et k∞/k une Zp-extension.
Nous construisons un Zp[[T−1]]-morphisme naturel de lim←− k

×
n⊗ZZp

dans un sous-ensemble particulier de C1(Zp)∗, le dual de l’espace
vectoriel sur Cp des fonctions continûment dérivables de Zp →
Cp. Nous appliquons les résultats au problème d’interpolation des
sommes de Gauss attachées aux caractères de Dirichlet.

Abstract. Let k be any number field, and let k∞/k be any
Zp-extension. We construct a natural Zp[[T − 1]]-morphism from
lim←− k

×
n ⊗Z Zp into a special subset of C1(Zp)∗, the dual of the Cp-

vector space of continuously differentiable functions from Zp →
Cp. We apply the results to the problem of interpolating Gauss
sums attached to Dirichlet characters.

1. Introduction
Fix an odd prime p and let d be a positive integer co-prime to p. For

an integer n, we let ζn = e2πi/n so that ζxn = ζn/x for every x | n. Let
k(n) = Q(ζdpn+1), and let Gn = Gal(k(n)/k(0)).

We take a moment to review some classical theory from which this pa-
per draws inspiration. Let θn ∈ Q[Gal(k(n)/Q)] denote the classical Stickel-
berger element attached to the number field k(n). Recall that θn, once prop-
erly made integral, annihilates the class group of k(n) (see [9]). Suppose ϕ
is a non-trivial even Dirichlet character of conductor dpn+1 taking values in
Ωp, an algebraic closure of Qp. The character ϕ decomposes uniquely into
a product of a tame character χ and a wild character ψ. Suppose χ 6= 1
and let θn(χ−1ω) ∈ Ωp[Gn] denote the χ−1ω-part of θn, where ω denotes
the Teichmüler character. In a celebrated work [5], Iwasawa showed that
the sequence (θn(χ−1ω)) ∈ lim←−Ωp[Gn] (the projective limit taken with re-
spect to the natural maps) is associated in a natural way to a function
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Fχ(T ) ∈ Ωp[[T − 1]] whose coefficients are integral and lie in a finite exten-
sion of Qp. What’s more, this function is essentially the p-adic L-function
of Leopoldt and Kubota. In fact, we have

Lp(s, χψ) = Fχ (ζψ(1 + p)s)

where ζψ = ψ(1 + p).
Unfortunately, if one restricts the action of θn to k+

(n), the maximal real
subfield of k(n), it reduces to a multiple of the norm. With logp denoting
the Iwasawa logarithm, non-trivial explicit elements such as

ϑn =
∑

σ∈G(k(n)/Q)
logp(1− ζσdpn+1)σ−1

were shown in [1], once properly made integral, to annihilate Cl(k+
(n))⊗ZO

where O is the ring of integers of the topological closure of k(n) ↪→ Ωp. Since
(1 − ζdpn+1) ∈ lim←− k

×
(n) where the projective limit is taken with respect to

the norm maps, it follows that (ϑn(χ)) ∈ lim←−Ωp[Gn]. This article was born
out of considering what analytic functions were naturally associate to the
non-trivial sequences

(
ϑn(χ)

)
(or more generally, to elements in lim←− k

×
(n)) in

analogy with Iwasawa’s construction of p-adic L-functions from
(
θn(χ−1ω)

)
.

Towards that end, let k be any number field, and let

k = k0 ⊂ k1 ⊂ k2 ⊂ · · · ⊂
∞⋃
n=0

kn = k∞

denote a Zp-extension of k. So Γ := Gal(k∞/k) is topologically isomorphic
to Zp, and Γn = Gal(kn/k0) ' Γ/Γpn . Let γ0 be a fixed topological gener-
ator for Γ and associate Γ with Zp via the isomorphism γa0 7→ a. Let p be
a prime of k such that the inertia subgroup of p is Gal(k∞/kj) for some
j ≥ 0. This necessitates p | p, and the valuation vp extends to k∞ ↪→ Ωp.

Let Cp denote the topological closure of Ωp. Let µ be a collection of maps
{µn : Γn → Cp}∞n=0 with the following property:

µn(x) =
∑
y 7→x

µn+1(y)

where Γn+1 → Γn naturally. We call such a collection of maps a distribution
on Γ. We denote the ring (under convolution) of all Cp-valued distributions
on Γ by D(Γ), and we write µ(a+ pnZp) in place of the more cumbersome
µn(γa0 mod Γpn).



C1(Zp)∗ and Zp-extensions 31

We write Cp[[Γ]] for the inverse limit of Cp[Γn] (with respect to the natural
maps). The rings Cp[[Γ]] and D(Γ) are isomorphic via the map

β : D(Γ)→ Cp[[Γ]]

µ 7→ β(µ) =

pn−1∑
a=0

µ(a+ pnZp)γ−a0

 .
We also have the following Γ-maps relating lim←− k

×
n to D(Γ) and Cp[[Γ]]:

ρ :
{

lim←− k
×
n → D(Γ)

(`n) = ` 7→ ρ(`) : a+ pnZp 7→ − logp
(
`
γa0
n
)
,

α :
{

lim←− k
×
n → Cp[[Γ]]

(`n) = ` 7→ α(`) =
(
−
∑pn−1
a=0 logp

(
`
γa0
n
)
γ−a0

)
.

Taken together, we have the commutative diagram of Γ-maps:

lim←− k
×
n D(Γ)

Cp[[Γ]]

ρ

α
β

We write M(Γ) for the sub-ring of D(Γ) consisting of those distributions
that are Zp-valued, and let I(Γ) ⊂ D(Γ) denote the M(Γ)-module gener-
ated by the image of ρ.

What does one do with distributions anyway? For µ ∈ D(Γ), we say that
a function f : Zp → Cp is µ-integrable to mean that the limit

∫
Zp
f(x) dµ(x) := lim

n→∞

pn−1∑
a=0

f(a)µ(a+ pnZp)

exists. We call this limit the Volkenborn integral of f with respect to µ. The
distinguishing feature of Volkenborn integration is the uniform choice of
representatives from the classes a + pnZp where 0 ≤ a < pn − 1 (namely,
the choosing of a itself).

Thus distributions give rise to linear functionals on appropriate function
spaces. For example, it’s well known that every continuous function is µ-
integrable for every µ ∈ M(Γ). So every µ ∈ M(Γ) determines a linear
functional on C(Zp), the collection of continuous functions on Zp, where

µ(f) :=
∫
Zp
f(x) dµ(x).
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What’s more, the Fourier transform M(Γ) → Λ := Zp[[T − 1]] given by
µ 7→ µ̂(T ) where

µ̂(T ) = µ(T x) =
∫
Zp
T x dµ(x) =

∞∑
m=0

(∫
Zp

(
x

m

)
dµ(x)

)
(T − 1)m

is a well-defined isomorphism. Taken together in this setting, we have the
commuting diagram of isomorphisms

M(Γ) Λ

Zp[[Γ]]

µ µ̂

β(µ)

given byβ

If M is a module over M(Γ) or Zp[[Γ]] naturally, then we consider it a
module over Λ (or any of the others for that matter) through the above
diagram.

In particular, consider k×n ⊗Z Zp as a Zp[Γn]-module in the natural way.
Then lim←− k

×
n ⊗Z Zp is a Zp[[Γ]]-module. Now, extend the Iwasawa logarithm

logp to a function Logp : k×n ⊗Z Zp → Cp in the natural way: Logp(`⊗ x) =
x logp(`). It follows that the map

% : lim←− k
×
n ⊗Z Zp → I(Γ)

(ln) = l 7→ %(l) = L : a+ pnZp 7→ Logp
(
l
γa0
n
)

is an onto Λ-morphism.
Our main result is that if f : Zp → Cp is continuously differentiable, then

f is λ-integrable for every λ ∈ I(Γ), in other words

Theorem 1.1. Let λ ∈ I(Γ). Then λ defines a linear functional on C1(Zp):

λ(f) :=
∫
Zp
f(x) dλ(x).

In particular, the Fourier transform λ̂(T ) ∈ Cp[[T − 1]] exists and has ra-
dius of convergence ≥ 1. The analytic functions λ̂(T ) are like L-functions for
the underlying norm coherent sequence. For example, consider the following
special case. Suppose k/Q is an abelian number field whose conductor is not
divisible by p2, and let F be any abelian number field linearly disjoint from
k and of conductor co-prime to p. If k∞/k is the cyclotomic Zp-extension of
k, then the tower of number fields Fkn forms the cyclotomic Zp-extension
of Fk, and we consider Γn (resp. ∆ := Gal(k0/Q)) as being contained in
(resp. a quotient of) the set of automorphisms of Gal(Fkn/Q) fixing F .
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For a character χ of ∆, let ρχ be the Γ-map

ρχ : lim←−(Fkn)× → D(Γ)

(`n) 7→ λχ : a+ pnZp 7→ −
∑
δ∈∆

logp(`
γa0 δ
n )χ(δ).

Let IFχ (Γ) denote the M(Γ)-module generated by the image of ρχ. The
functions λ̂χ(T ) (or λ̂(T ), for that matter) interpolate values reminiscent of
those found in the formula for Lp(1, ϕ), the p-adic L-function of Leopoldt,
Kubota, Iwasawa, et al. As a straightforward consequence of the above
theorem, we have

Theorem 1.2. Let λχ ∈ IFχ (Γ). Then λχ defines a linear functional on
C1(Zp) where

λχ(f) :=
∫
Zp
f(x) dλχ(x).

If ψ is a character of Γn with ζψ = ψ(γ0) and (`n) ρχ−→ λχ, then

λ̂χ(ζψ) = −
∑
σ

logp
(
`σn
)
ϕ(σ)

where the sum runs over all σ ∈ Γn ×∆ = Gal(kn/Q) and ϕ = χψ.

We apply the above results to the problem of interpolating Gauss sums
attached to a Dirichlet character. Particularly interesting is the case when
the tamely ramified character χ is of conductor p. In this case, the Gauss
sums

τ(χψ) =
pn+1∑
a=1

χψ(a)ζapn+1

are essentially interpolated from the Fourier transform of λχ ∈ I
Q(ζp−1)
χ (Γ)

where the underlying norm coherent sequence generates the projective limit
of principal units of Qp(ζpn+1). Since it’s peripheral to the interpolation
problem, we also show how to use the special values of the functions λ̂χ(T )
to construct an explicit sequence (ϑn) ∈ Zp[Γn] such that ϑn annihilates
the χ-part of the Sylow p-subgroup of Cl

(
k+

(n)
)
for every n ≥ 0.

2. Volkenborn Distributions
In this section we give an overview of the theory of Volkenborn distri-

butions. C. Barbacioru [3] developed the general notion of a Volkenborn
distribution in his doctoral dissertation. This section is largely an overview
of the tools from [3] that will be needed in the sequel wherein we show that
distributions in I(Γ) are, in fact, Volkenborn.
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Definition. A distribution µ, on Zp, is said to be Volkenborn if there exists
B(µ) ∈ R≥0 such that

|pµ(a+ pn+1Zp)− µ(a+ pnZp)|p ≤ B(µ)

for all a ∈ Zp and n ∈ Z≥0

Note that all distributions that are bounded in value are necessarily
Volkenborn, but a distribution need not be bounded to be Volkenborn.
In fact, the prototype Volkenborn distribution is the Haar distribution:
a+ pnZp 7→ p−n.

Lemma 2.1. Let µ be a Volkenborn distribution and let fn : Zp → Cp be
defined by fn : x 7→ pnµ(x + pnZp). Then there exists a continuous and
bounded function f : Zp → Cp such that fn ⇒ f uniformly on Zp.

Proof. Note that

pnµ(a+ pnZp) =

 n∑
j=1

pj−1(pµ(a+ pjZp)− µ(a+ pj−1Zp))

+ µ(Zp).

The terms of the sum go to zero as j →∞ since µ is Volkenborn. It follows
that the sum converges. Define f : Zp → Cp by x 7→ lim pnµ(x+pnZp). Note
the above shows that f is bounded, in fact, |f(x)| ≤ max{B(µ), µ(Zp)} for
all x ∈ Zp.

Now, let x ∈ Zp be arbitrary. Let m > n be sufficiently large so that

|f(x)− fn(x)|p ≤ max
{
{|fj+1(x)− fj(x)|p}

m−1
j=n ∪ {|f(x)− fm(x)|p}

}
≤ max{|fj+1(x)− fj(x)|p}

m−1
j=n

≤ B(µ)
pn

.

The above bound does not depend on x, so fn ⇒ f . The function f is
continuous since it is a uniform limit of continuous functions on a compact
set. �

For a Volkenborn distribution µ, we want to show that all C1 functions
are µ-integrable. The strategy will be to first show that polynomials are
µ-integrable. This, in conjunction with properties of Mahler series of C1

functions, will give us the µ-integrability of C1 functions.

Proposition 2.2. Let µ be a Volkenborn distribution and P be a polyno-
mial. Then P is µ-integrable.
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Proof. Since limits are finitely additive, it suffices to show that P (x) = xm

is µ-integrable for all m ∈ Z≥0. We proceed by induction. For P (x) = 1,
we have ∫

Zp
dµ(x) = lim

n→∞

pn−1∑
a=0

µ(a+ pnZp) = µ(Zp).

Now, let Sn,m :=
∑pn−1
j=0 jmµ(j + pnZp) for m,n ∈ Z≥0. We wish to show

that for a fixed m ≥ 1 that Sn,m is a Cauchy sequence. Note that

Sn+1,m − Sn,m =
pn−1∑
j=0

p−1∑
k=0

((j + kpn)m − jm)µ(j + kpn + pn+1Zp)

=
pn−1∑
j=0

p−1∑
k=0

m∑
l=1

(
m

l

)
(kpn)ljm−lµ(j + kpn + pn+1Zp).

(?)

By Lemma 2.1 we only need to show that the l = 1 term from (?) is small.
To do so, we will rewrite that term as follows:

pn−1∑
j=0

p−1∑
k=0

mkpnjm−1µ(j + kpn + pn+1Zp) = an + bn

where

an =
pn−1∑
j=0

p−1∑
k=0

mkpnjm−1(µ(j + kpn + pn+1Zp)−
1
p
µ(j + pnZp)),

bn =
pn−1∑
j=0

p−1∑
k=0

mkpn−1jm−1µ(j + pnZp).

It remains to show that both an and bn go to zero as n → ∞. For an, we
have

|an|p =

∣∣∣∣∣∣
pn−1∑
j=0

p−1∑
k=0

mkpnjm−1(µ(j + kpn + pn+1Zp)−
1
p
µ(j + pnZp))

∣∣∣∣∣∣
p

≤
∣∣∣∣mpn(µ(j + kpn + pn+1Zp)−

1
p
µ(j + pnZp))

∣∣∣∣
p

≤ p1−nB(µ).
It follows that an → 0 as n→∞. For bn, we have

bn =
pn−1∑
j=0

p−1∑
k=0

mkpn−1jm−1µ(j + pnZp) = p− 1
2 mpnSn,m−1.

By the inductive hypothesis {Sn,m−1}∞n=0 is a bounded sequence (since it is
a convergent sequence). It follows that bn → 0 as n→∞. This shows that
Sn,m is a Cauchy sequence, so limn→∞ Sn,m converges. �
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Since C1 functions are determined by their Mahler series, it is important
to know bounds on

∣∣∣∫Zp (xm)dµ(x)
∣∣∣. The next proposition gives such a bound.

Proposition 2.3. Let µ be a Volkenborn distribution. Then there exists
c ∈ R≥0 such that for all m ∈ Z≥0 we have∣∣∣∣∣

∫
Zp

(
x

m

)
dµ(x)

∣∣∣∣∣
p

≤ cm

Proof. For m = 0, we know that
∫
Zp dµ(x) exists and equals µ(Zp). From

this point on let m ∈ Z≥1. By Proposition 2.2 we know that
(x
m

)
is µ

integrable. The proof of the inequality proceeds in a similar manner to the
proof of Proposition 2.2, and we will use the sequence {Tn,m}∞n=0 where

Tn,m :=
pn−1∑
j=0

(
j

m

)
µ(j + pnZp).

Note that

(2.1) |Tn+1,m − Tn,m|p

=

∣∣∣∣∣∣
pn−1∑
j=0

p−1∑
k=0

((
j + kpn

m

)
−
(
j

m

))
µ(j + kpn + pn+1Zp)

∣∣∣∣∣∣
p

.

To estimate Equation (2.1), we use the binomial identity(
j + kpn

m

)
=

m∑
l=0

(
j

l

)(
kpn

m− l

)
.

The right hand side of Equation (2.1) becomes

(2.2)

∣∣∣∣∣∣
pn−1∑
j=0

p−1∑
k=0

m−1∑
l=0

(
j

l

)(
kpn

m− l

)
µ(j + kpn + pn+1Zp)

∣∣∣∣∣∣
p

.

We can bound each term of the sum from Equation (2.2) as follows:∣∣∣∣∣
(
j

l

)(
kpn

m− l

)
µ(j + kpn + pn+1Zp)

∣∣∣∣∣
p

≤
∣∣∣∣∣
(
kpn

m− l

)
µ(j + kpn + pn+1Zp)

∣∣∣∣∣
p

,

where the right hand side of the above inequality equals∣∣∣∣∣ kpnm− l

(
kpn − 1
m− l − 1

)
µ(j + kpn + pn+1Zp)

∣∣∣∣∣
p

≤
∣∣∣∣ kpnm− l

µ(j + kpn + pn+1Zp)
∣∣∣∣
p

≤ p−nm|µ(j + kpn + pn+1Zp)|p
≤ Cpm by Lemma 2.1.
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This estimate gives us that Equation (2.2) is bounded above by Cpm. In
other words,
(2.3) |Tn+1,m − Tn,m|p ≤ Cpm.

Now we are in position to prove the result.

|Tn,m|p =

∣∣∣∣∣∣
n∑
j=0

(Tn,m − Tn−1,m) + T0,m

∣∣∣∣∣∣
p

≤ max{Cpm, |T0,m|}
= max{Cpm, |µ(Zp)|p}.

Letting c = max{Cp, |µ(Zp)|p}, we see that |Tn,m|P ≤ cm. This gives us
that |

∫
Zp
(x
m

)
dµ(x)|p ≤ cm, as claimed. �

It is important to note that c from Proposition 2.3 is independent of m.

Theorem 2.4 (Barbacioru [3]). Let f ∈ C1(Zp) and µ be a Volkenborn
distribution. Then f is µ-integrable.

Proof. Since f ∈ C1, we know that the Mahler series of f is of the form
∞∑
m=0

am

(
·
m

)
where lim

m→∞
m|am|p = 0

(see [2]). We will show that

(2.4)
∫
Zp
f(x)dµ(x) =

∞∑
m=0

am

∫
Zp

(
x

m

)
dµ(x).

By Proposition 2.3 we know that
∣∣∣∫Zp (xm)dµ(x)

∣∣∣
p
≤ cm. This tells us that

lim
m→∞

am

∫
Zp

(
x

m

)
dµ(x) = 0.

Thus the right hand side of Equation (2.4) converges.
Now we will show that the left hand side of Equation (2.4) exists and

equals the right hand side of the same equation. To do so we will use the
sequence {Tn,m}∞m=0 from Proposition 2.3. The proof of Proposition 2.3
showed that there exists c ∈ R≥0 such that |Tn,m|p ≤ cm.

Let ε > 0. Then there exists M ∈ Z>0 such that for all m ≥M we have
that |amTn,m|p < ε. Also, there exists N ∈ Z>0 such that for all 0 ≤ m ≤M
and n ≥ N we have that |am(Tn,m −

∫
Zp
(x
m

)
dµ(x))|p < ε.

Let n ≥ N . Then
pn−1∑
j=0

f(j)µ(j + pnZp)−
∞∑
m=0

am

∫
Zp

(
x

m

)
dµ(x) = aM + bM
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where

aM =
pn−1∑
j=0

M∑
m=0

am

(
j

m

)
µ(j + pnZp)−

M∑
m=0

am

∫
Zp

(
x

m

)
dµ(x)

=
M∑
m=0

am

(
Tn,m −

∫
Zp

(
x

m

)
dµ(x)

)
and

bM =
pn−1∑
j=0

∞∑
m=M

am

(
j

m

)
µ(j + pnZp)−

∞∑
m=M

am

∫
Zp

(
x

m

)
dµ(x)

=
∞∑

m=M
amTn,m −

∞∑
m=M

am

∫
Zp

(
x

m

)
dµ(x).

We have |aM |p < ε by our choice of n (which depends on M), and
|bM |p < ε by our choice of M . It follows that

∫
Zp f(x)dµ(x) exists, so f

is µ-integrable. �

3. The module of Volkenborn Distributions
Let V(Γ) denote the subgroup (under addition) of D(Γ) of Volkenborn

distributions. Recall that Λ ' M(Γ) acts on D(Γ) by convolution. In this
section, we show that V(Γ) is closed under that action so we may view V(Γ)
as a Λ-module. We then investigate the effect that the action of Λ on V(Γ)
has on the Fourier transform of distributions contained in V(Γ), and most
importantly, we will show that I(Γ) is a sub-module of V(Γ).

Lemma 3.1. V(Γ) is a Λ-module.

Proof. Let ν ∈ V(Γ) and µ a bounded distribution, i.e., a distribution such
that there exists B ∈ R≥0 satisfying

|µ(a+ pnZp)|p ≤ B

for all a and n. We show more generally that ν ∗µ ∈ V(Γ). By the definition
for convolution, we have

(ν ∗µ)(a+ pn+1Zp) =
pn−1∑
j=0

p−1∑
k=0

ν(j+ kpn + pn+1Zp)µ(a− j− kpn + pn+1Zp),

and similarly

(ν ∗ µ)(a+ pnZp) =
pn−1∑
j=0

ν(j + pnZp)
p−1∑
k=0

µ(a− j − kpn + pn+1Zp).
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So we see that p · (ν ∗ µ)(a+ pn+1Zp)− (ν ∗ µ)(a+ pnZp) equals
pn−1∑
j=0

p−1∑
k=0

µ(a− j− kpn + pn+1Zp) ·
(
p ·ν(j+ kpn + pn+1Zp)− ν(j + pnZp)

)
.

Since µ is bounded and
p · ν(j + kpn + pn+1Zp)− ν(j + pnZp)

is bounded independently from j and k, we see that ν ∗ µ ∈ V(Γ). �

The Fourier transform of a Volkenborn distribution is guaranteed to exist
from Theorem 2.4. We now study how convolution by µ ∈ M(Γ) affects
the Fourier transform of ν ∈ V(Γ). For a Volkenborn distribution ν, let fν
denote the function defined by x 7→ lim pnν(x + pnZp). Recall that fν is a
bounded continuous function by Lemma 2.1. Let S denote the indefinite-
sum operator. For f ∈ C(Zp), the action of S on f simply shifts the Mahler
expansion in the following way:

Sf = S
∞∑
m=0

(
·
m

)
(∇mf)(0) =

∞∑
m=0

(
·

m+ 1

)
(∇mf)(0) ∈ C(Zp)

where (∇f)(x) = f(x+1)−f(x) is the finite-difference operator. The reader
should consult [8, Chapter V] for more details.

Proposition 3.2. Let µ ∈M(Γ). For every ν ∈ V(Γ), we have

(ν̂ ∗ µ)(T ) = ν̂(T ) · µ̂(T )− logp(T ) ·
∞∑
m=0

µ
(
Sm+1(fν ◦ ι)

)
(T − 1)m

where ι : x 7→ −1− x is the canonical involution of Zp.

Proof. Note that
pn−1∑
a,b=0

T a+bν(a+ pnZp)µ(b+ pnZp)
n→∞−−−→

∫
Zp
T x dν(x) ·

∫
Zp
T x dµ(x).

Consider the sum on the left. Collecting all terms such that a+ b ≡ c mod
pn, we see that it equals
pn−1∑
c=0

T c(µ∗ν)(c+pnZp)+
pn−2∑
c=0

pn−c−1∑
d=1

(T c+pn−T c)µ(c+d+pnZp)ν(−d+pnZp).

As n → ∞, the term on the left converges to (µ̂ ∗ ν)(T ) since µ ∗ ν is
Volkenborn. Hence the term on the right converges. We rewrite that term
as

T p
n − 1
pn

∞∑
m=0

pn−2∑
c=0

(
c

m

) pn−c−1∑
d=1

µ(c+ d+ pnZp) · pnν(−d+ pnZp) · (T − 1)m.
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This expression converges to logp(T ) · G(T ) where the m-th coefficient of
G(T ) equals

gm := lim
n→∞

pn−2∑
c=0

(
c

m

) pn−c−1∑
d=1

µ(c+ d+ pnZp) · pnν(−d+ pnZp).

We collect terms according to µ(j + pnZp) obtaining

gm = lim
n→∞

pn−1∑
j=0

((
·
m

)
~ (fn ◦ ι)

)
(j) · µ(j + pnZp)

where fn : x 7→ pnν(x + pnZp) and ~ is the shifted-convolution product.
We now use the fact that

( ·
m

)
~ g = Sm+1g and fn ⇒ fν to obtain

gm = lim
n→∞

pn−1∑
j=0

Sm+1(fν ◦ ι)(j)µ(j + pnZp)

=
∫
Zp

Sm+1(fν ◦ ι)(x) dµ(x).

This completes the proof of the proposition. �

Remark. Note that if ν ∈M(Γ) (or even if ν is merely bounded in value),
then fν ≡ 0. So we recover the well-known fact that ν̂ ∗ µ = ν̂ ∗ µ̂, the
Fourier transform of a convolution of measures equals the convolution of
Fourier transforms.

We now show that I(Γ) is contained in V(Γ). This is the key to our main
result.

Theorem 3.3. I(Γ) is a sub-module of V(Γ).

Proof. In light of Lemma 3.1, it suffices to prove that the generators of I(Γ)
reside in V(Γ). Let ` = (`n) ∈ lim←− k

×
n and λ = ρ(`). We have

pλ(a+ pnZp)− λ(a+ pn−1Zp) = logp

`γa0n−1

`
γa0 p
n

 .
Observe that

`
γa0
n−1

`
γa0 p
n

Nn
n−1−−−→ 1

whereNn
n−1 is the norm from kn to kn−1. Since kn/kn−1 is a cyclic extension,

Hilbert’s Theorem 90 gives an element αn ∈ k×n such that

`
γa0
n−1

`
γa0 p
n

= α
γa0 (γn−1)
n where γn = γp

n−1

0 .
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It remains to show that logp
(
α
γa0 (γn−1)
n

)
is bounded independent of a and

n. In fact, we need only show that it is bounded independent of a and n
for all n sufficiently large.

Assume that the inertia subgroup for p of k is Gal(k∞/km) and let n ≥ m.
Fix an embedding k∞ ↪→ Ωp, and let πn be a local parameter for Kn, the
topological closure of kn. Since Kn/Km is totally ramified, it follows that

Nn
m(πn) = πm

is a local parameter for Km. Moreover, we get that

Nn
m

(
K×n

)
= 〈πm〉 ×Nn

m(Un)

where Un denotes the units of Kn. Note that

[Um : Nn
m(Un)] = pn−m

since Kn/Km is cyclic and totally ramified. Let U (j)
m denote the j-th group

of principal units of Km, so U (j)
m = 1 + (πm)j ⊂ Um. Let q denote the order

of the residue class field for Km, and recall the filtration

Um ⊃ U (1)
m ⊃ U (2)

m ⊃ · · ·

where

[U (j)
m : U (j+1)

m ] =
{
q − 1 j = 0
q else.

Let r be the smallest positive integer such that U (r)
m ⊂ Nn

m(Un), so

(3.1) 〈πm〉 × U (r)
m ⊆ Nn

m(K×n ).

From the above filtration, we see that as n increases so must r. Let n be
large enough so that r > 1.

From Equation (3.1), local class field theory gives us that Kn ⊆ Lr
where Lr is the field of πrm-division points of some Lubin-Tate module for
πm (see [6, 7]). For a real number s ≥ −1, we define the s-th ramification
group

Gs(Lr/Km) = {σ ∈ Gal(Lr/Km) : w(σ(a)− a) ≥ s+ 1 ∀a ∈ O}

where O is the valuation ring of Lr and w is the valuation associate to its
maximal ideal. The Lubin-Tate extensions have the property that

Gqr−1−1(Lr/Km) = Gal(Lr/Lr−1).

Let H ⊂ Gal(Lr/Km) such that Kn is the fixed field of H. A theorem of
Herbrand (see [7, II.10.7]) gives us that

Gs(Lr/Km)H/H = Gt(Kn/Km), with t =
∫ s

0

dx

[G0(Lr/Kn) : Gx(Lr/Kn)] .
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By the minimality of r, we have that

Gqr−1−1(Lr/Km) = Gal(Lr/Lr−1) 6⊆ H,

so for s = qr−1 − 1, we have Gt(Kn/Km) is non-trivial. We now obtain a
crude but functional lower bound for the value t. Since Lr/Km is totally
ramified, we have

t = [Kn : Km]
[Lr : Km]

qr−1−1∑
j=1

#Gj(Lr/Kn) ≥ pn−m

q − 1 ·
qr−1 − 1
qr−1 ≥ pn−m−1

q − 1 = t(n)

where the last inequality follows because r > 1. It follows that

γn ∈ Gal(Kn/Kn−1) ⊆ Gt(Kn/Km) ⊆ Gt(n)(Kn/Km).

Let e(πn : p) denote the ramification index of πn over p. For all n sufficiently
large, we have αγ

a
0 (γn−1)
n − 1 ∈ (πn)t(n) so

vp
(
α
γa0 (γn−1)
n − 1

)
≥ t(n)
e(πn : p) = 1

p(q − 1)e(π : p) .

Whence logp(α
γa0 (γn−1)
n ) is bounded independent of n and a for all n suffi-

ciently large. This proves the theorem. �

We may now give

Proofs of Theorems 1.1 and 1.2. Theorem 1.1 follows from Theorems 2.4
and 3.3. It’s straightforward to verify that if λχ ∈ IFχ (Γ), then λχ is Volken-
born. So the first statement of Theorem 1.2 also follows from Theorems 2.4
and 3.3. For the second statement of Theorem 1.2, note that ψ(γ0) is a
pn-th root of unity so

λ̂χ(ζψ) = lim
j→∞

−
pj−1∑
a=0

ψ(γa0 )
∑
δ∈∆

logp
(
`
γa0 δ
n
)
χ(δ)

= −
pn−1∑
a=0

ψ(γa0 )
∑
δ∈∆

logp
(
`
γa0 δ
n
)
χ(δ).

The second statement now follows. �

Remark. Let D ⊂ Cp be the open disk of radius 1 centered about 1, and
let H(D) denote the ring of power series in Cp[[T −1]] convergent on D. Let
F be the composition of the map % with the Fourier transform:

lim←− k
×
n ⊗Z Zp I(Γ) H(D)/

(
logp T

)%

F
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Given Proposition 3.2 and Theorem 3.3, we get that F is a well-defined
Λ-morphism. If (ln) = l ∈ kerF and %(l) = L, then for every n ≥ 0, for
every character ψ of Γn, we have

0 = L̂(ζψ) =
pn−1∑
a=0

ψ(γa0 ) Logp(l
γa0
n )

where

eψ ·
pn−1∑
a=0

Logp(l
γa0
n )γ−a0 =

pn−1∑
a=0

ψ(γa0 ) Logp(l
γa0
n ) · eψ ∈ Cp[Γn]

and eψ ∈ Cp[Γn] is the idempotent associate to ψ. Since Cp[Γn] =
⊕
ψ Cpeψ,

it follows that

L̂ ≡ 0 mod (logp T )⇔ 0 =
pn−1∑
a=0

Logp(l
γa0
n )γ−a0 , ∀n ≥ 0

⇔ L = 0.
Whether L is the 0-distribution is a more delicate question. For suppose
ln =

∑
(`j ⊗ xj), then

L(pnZp) = Logp(ln) =
∑

xj logp(`j).

We now need to know whether the terms logp(`j) are p-adically indepen-
dent, a question related to Leopoldt’s conjecture.

4. Applications to Cyclotomic Fields
In this section we specialize to the case when k is the cyclotomic field

Q(ζpd) and k∞/k is the cyclotomic Zp-extension of k. Recall that d is a
positive integer co-prime to p. We apply the previous results to the problem
of interpolating Gauss sums attached to Dirichlet characters. Despite the
specialization to cyclotomic fields, we continue to use the more generic
notation, i.e., we write kn in place of k(n) and Γn in place of Gn.

For a Dirichlet character ϕ, let fϕ denote the conductor of ϕ and let τ(ϕ)
denote the Gauss sum

τ(ϕ) =
fϕ∑
a=1

ϕ(a)ζafϕ .

We associate Dirichlet characters of conductor dividing dpn+1 to characters
of Gal

(
Q(ζdpn+1)/Q

)
in the obvious way: ϕ(σa) = ϕ(a) where σa : ζdpn+1 7→

ζadpn+1 .
Fix a character χ of ∆ = Gal(k/Q) with d | fχ, and let F = Q(ζp−1).

For any integer t, let `t denote the norm coherent sequence of elements
`t = (ζtp−1 − ζdpn+1) ∈ lim←−(Fkn)×.
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Note that the norm coherency of `t follows from the fact that ζxn = ζn/x for
all x | n. As in Section 1, we consider F inert under the action of ∆ and Γn.

4.1. For arbitrary d > 0. In this section, we assume that d is an arbi-
trary positive integer co-prime to p, and we evaluate the Fourier transform
of the distributions associate to the norm coherent sequences `t at p-power
roots of unity.

Theorem 4.1. If λχ = ρχ(`t) ∈ IFχ (Γ) and ψ is a character of Γn with
ζψ = ψ(γ0), then

λ̂χ(ζψ) = −
(
1− ϕ(p)

) fϕ∑
a=1

logp(ζtp−1 − ζafϕ)ϕ(a)

where ϕ = χψ. 1

Proof. Note that λχ satisfies

λ̂χ(ζψ) =
∫
Zp
ψ(γ0)x dλχ(x) =

pn−1∑
a=0

ψ(γa0 )λχ(a+ pnZp)

where the last equality follows since ψ is a character of Γn. Hence

λ̂χ(ζψ) = −
dpn+1∑
b=1

(b,mp)=1

logp(ζtp−1 − ζbdpn+1)ϕ(b)

= −
(
1− ϕ(p)

) dpn+1∑
b=1

logp(ζtp−1 − ζbdpn+1)ϕ(b)

= −
(
1− ϕ(p)

) fϕ∑
b=1

logp(ζtp−1 − ζbfϕ)ϕ(b),

since fϕ | dpn+1. This completes the proof of the theorem. �

Corollary 4.2. If t ≡ 0 mod p− 1, then

λ̂χ(ζψ) = 1− ϕ(p)
1− ϕ(p)/pτ(ϕ)Lp(1, ϕ).

where Lp(s, ϕ) is the Leopoldt–Kubota p-adic L-function. In particular, if
p | fϕ, then

λ̂χ(ζψ) = τ(ϕ)Lp(1, ϕ).

1As usual, we interpret logp(0) · 0 to be 0.
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Proof. The first fact follows immediately from the formula (see [10])

Lp(1, ϕ) = −
(

1− ϕ(p)
p

) 1
τ(ϕ)

fϕ∑
a=1

logp(1− ζafϕ)ϕ(a).

The second fact follows from the first since if p | fϕ, then ϕ(p) = 0. �

4.2. For d = 1. Combining Corollary 4.2 with results from Iwasawa [4]
allow us to view the Gauss sums τ(χψ) in an interesting light when the
conductor of χψ is a p-power and χ is even. Essentially, they arise as special
values of the Fourier transform of a distribution associate to a generating
sequence for the projective limit of principal units of Qp(ζpn+1).

Accordingly, we restrict ourselves to the scenario when d = 1 so kn =
Q(ζpn+1). Consequently, we have Kn = Qp(ζpn+1). We make heavy use of
the maps ρ, α and β introduced in Section 1. The maps ρ and α obviously
extend to lim←−K

×
n . For any x = (xn) ∈ lim←−K

×
n , we write the components of

α(x) as αn(xn) ∈ Cp[Γn]. Let Un denote the principal units of Kn, and set
U = lim←−Un. Let χ be an even character, and consider the following diagram
of maps:

eχU ρ(eχU)

α(eχU)

Cp[[T − 1]]
ρ

α
β

where the far right map is the Fourier transform. Since logp has no roots
on eχUn (since χ is not the Teichmüller character), the maps ρ, β, and α
form a commutative diagram of Λ-isomorphisms (see Section 3).

Theorem 4.3. If χ is a non-trivial even character of ∆, then there exists
an integer t, dependent on χ, such that the distribution

λχ = 1
p− 1 · ρχ(`t) ∈ IFχ (Γ)

satisfies
λ̂χ(ζψ) = τ(χψ) · (unit)

for every wildly ramified character ψ.

Proof. Let Cn ⊆ Un denote the topological closure of the cyclotomic units
of kn congruent to 1 mod πn, and let C = lim←−Cn with respect to the norm
maps. Recall that eχCn is generated by

cn =

ζ(1−δ0γ0)/2
pn+1

ζδ0γ0
pn+1 − 1
ζpn+1 − 1

(p−1)eχ
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where δ0 generates ∆. Let c = (cn) ∈ eχC, and let ξχ = ρ(c) denote the
associated distribution. What’s more, there exists a p − 1-st root of unity
ζχ ∈ Zp not equal to 1 such that eχUn is generated by

un =
(
ζχ − ζpn+1

ω(ζχ − 1)

)eχ
where ω is the Teichmüller character (see [10, Theorem 13.54]). Let u =
(un) ∈ eχU , and let λχ = ρ(u) denote the associated distribution. Then

λχ(a+ pnZp) = − logp
(
u
γa0
n
)

= −1
p− 1

∑
δ∈∆

logp
(
ζχ − ζ

γa0 δ

pn+1
)
χ(δ).

So λχ = ρχ(`t)/(p − 1) for some integer t. From Theorem 4.1, it follows
that

λ̂χ(ζψ) = −1
p− 1

fϕ∑
b=1

logp
(
ζχ − ζbfϕ

)
ϕ(b)

where ϕ = χψ. Since the terms logp(ζχ − ζbfϕ) for (b, fϕ) = 1 are linearly
independent over Q, they must also be linearly independent over Qalg by a
theorem of Brumer. Hence λ̂χ(ζψ) 6= 0.

Now, there exists a distribution µχ ∈ M(Γ) such that ξχ = µχ ∗ λχ.
Specifically, µχ satisfies uβ(µχ) = c. Also, there exists Hχ(T ) ∈ Λ× such
that

µ̂χ(T ) ·Hχ(T ) = Gχ(T ) ∈ Λ
where

Gχ
(
(1 + p)s

)
= Lp(1− s, χ),

(see [4] or [10, Theorem 13.56]). Let Fχ(T ) ∈ Λ such that Lp(s, χψ) =
Fχ
(
ζψ(1 + p)s

)
. Then Fχ and Gχ are related via the formula

Fχ(T ) = Gχ

(1 + p

T

)
.

Since λ̂χ(ζψ) 6= 0, by Proposition 3.2 we have that

(4.1)
[
µ̂χ(T ) = ξ̂χ(T )

λ̂χ(T )

]
T=ζ

for any pn-th root of unity ζ. It follows that

Lp(1, χψ) = Fχ
(
ζψ(1 + p)

)
= Gχ

(
ζψ
)

=
ξ̂χ(ζψ)
λ̂χ(ζψ)

·Hχ(ζψ).
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On the other hand, by Corollary 4.2 we have

Lp(1, χψ) =
ξ̂χ(ζψ)

τ(χψ)(χ(δ0)ζψ − 1) .

Dividing the formula for Lp(1, χψ) by the formula for Lp(1, χψ) yields

Lp(1, χψ)
Lp(1, χψ) =

λ̂χ(ζψ)
τ(χψ)(χ(δ0)ζψ − 1)Hχ(ζψ)

whence
(4.2) λ̂χ(ζψ) = τ(χψ)

[
(χ(δ0)ζψ − 1)Hχ(ζψ)Fχ

(
ζψ(1 + p)

)1−σ]
where σ ∈ Gal(Qp(ζψ)/Qp) is defined by σ : ζψ 7→ ζψ. Since χ is non-trivial,
the term above in brackets is a unit of Zp[ζψ]. �

Keeping notation from the proof of Theorem 4.3, let Rp(eχUn) denote the
p-adic regulator of eχUn. Specifically, for any set of elements ε1, ε2, . . . , εpn ∈
eχUn that generate eχUn as a Zp-module, set

Rp(eχUn) = det
(

logp(ε
γ
j )
)
j,γ

where γ ranges over Γn. Note that Rp(eχUn) is determined only up to a
unit of Zp.

Corollary 4.4. There exists y ∈ eχU such that y generates eχU (as a
Zp[[Γ]]-module) and the associated distribution υχ = ρ(y) satisfies∏

ψ∈Γ̂n

υ̂χ(ζψ) =
∏
ψ∈Γ̂n

τ(χψ) = Rp(eχUn).

Proof. Keeping notation from the previous theorem, let ε ∈ M(Γ) such
that

ε̂(T ) =
[(
χ(δ0)
T
− 1

)
Hχ(T )

]−1
∈ Λ×.

Let y = uβ(ε) where u is defined as in the proof of Theorem 4.3. Since β
and the Fourier transform are isomorphisms (when restricted toM(Γ)), it
follows that y = (yn) also generates eχU . Moreover, letting ρ(y) = υχ ∈
IFχ (Γ), from Equations (4.1) and (4.2) we get that

υ̂χ(ζψ) = τ(χψ) · Fχ
(
ζψ(1 + p)

)1−σ
.

Note that υ̂χ(ζψ) is the χψ-part of Rp(eχUn). To be precise, let Υ(n)
χ =

αn(yn), so that

Υ(n)
χ = −

pn−1∑
a=0

∑
δ∈∆

logp(y
γa0
n )χ(δ)γ−a0 ∈ Kn[Γn].
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Now let Υ(n)
χψ ∈ Kn be defined by

eχψΥ(n) = Υ(n)
χψeχψ,

and note that Υ(n)
χψ = υ̂χ(ζψ). Then Rp

(
eχUn

)
equals

∏
ψ∈Γ̂n

Υ(n)
χψ =

∏
ψ∈Γ̂n

υ̂χ(ζψ) =
∏
ψ∈Γ̂n

τ(χψ) ·
Fχ
(
ζψ(1 + p)

)
Fχ
(
ζψ(1 + p)

) =
∏
ψ∈Γ̂n

τ(χψ). �

Under the additional assumption that p is regular, the above equality
of products can be refined into an equality of components. In particular,
keeping notation from Theorem 4.3 and Corollary 4.4, we have

Corollary 4.5. If p is a regular prime, then there exists v ∈ eχU such that
v = (vn) generates eχU and the associated distribution νχ = ρ(v) satisfies

ν̂χ(ζψ) = τ(χψ) = N(n)
χψ ,

where N(n)
χ = αn(vn) and N (n)

χψ is its ψ-part.

Proof. If p is a regular prime, then Fχ(T ) ∈ Λ×, hence

Gχ(T ), Gχ
(1 + p

T

)
∈ Λ×

as well. So the values Fχ
(
ζψ(1 + p)

)1−σ are interpolated by a power series
in Λ×, namely,

Fχ
(
ζψ(1 + p)

)1−σ = Gχ(T )
Gχ
(
(1 + p)/T

) ∣∣∣∣∣
T=ζψ

.

Let ε ∈M(Γ) such that

ε̂(T ) =
[

Gχ(T )
Gχ
(
(1 + p)/T

)]−1

.

Let v = yβ(ε) where y is as in Corollary 4.4. In a similar fashion, we get
that v = (vn) also generates eχU , and if νχ = ρ(v), then

N(n)
χψ = −

pn−1∑
a=0

ψ(a)
∑
δ∈∆

logp
(
v
γa0 δ
n
)
χ(δ) = ν̂χ(ζψ) = τ(χψ). �
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Remark. Note that µχ ∈M(Γ) from the proof of Theorem 4.3 can be given
explicitly in terms of λ̂χ(T ) and ξ̂χ(T ) from Theorem 4.3. In particular,

µχ(a+ pnZp) = 1
pn

pn−1∑
j=0

ζ−japn
ξ̂χ(T )
λ̂χ(T )

∣∣∣∣∣
T=ζj

pn

.

Let En ⊆ Un denote the topological closure of the units of kn congruent to
1 mod πn. The map

αn : eχUn → Kn[Γn]

ε 7→
pn−1∑
a=0

logp
(
εγ
a
0
)
γ−a0

is a Zp[Γn]-module map. Since λ̂χ(ζψ) doesn’t vanish, the element αn(un)
is invertible in Kn[Γn]. Since Un is generated by un, the element αn(un)−1

acts as an integralizer for the map αn|En in the sense of [1, Definition 2.5].
Let An : En → Zp[Γn] be the map defined by

An(ε) = αn(un)−1 · αn(ε).
It follows from [1, Theorem 3.1] that the image of the cyclotomic units of
kn under An annihilates the χ-part of the Sylow p-subgroup of Cl

(
k+
n ). Let

β(µχ) =
(
M

(n)
χ
)
∈ Zp[[Γ]], so

M (n)
χ =

pn−1∑
a=0

µχ(a+ pnZp)γ−a0 ∈ Zp[Γn].

Since β(µχ) = α(u)−1 · α(c), it follows that

M (n)
χ = αn(un)−1 · αn(cn).

So M
(n)
χ is indeed in the image of the cyclotomic units of the map An.

Therefore
(
M

(n)
χ
)
∈ Zp[[Γ]] is a coherent sequence of explicit annihilators of

the χ-part of the Sylow p-subgroup of Cl(k+
n ).
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