Let be a Dedekind domain with field of fractions and a finite group. We show that, if is a ring of -adic integers, then the Witt decomposition map between the Grothendieck-Witt group of bilinear -modules and the one of finite bilinear -modules is surjective. For number fields is also surjective, if is a nilpotent group of odd order, but there are counterexamples for groups of even order.
Soit un anneau de Dedekind et son corps de fractions. Soit un groupe fini. Si est un anneau d’entiers -adiques, alors l’application de décomposition de Witt entre le groupe de Grothendieck-Witt des -modules bilinéaires et celui des -modules bilinéaires de torsion est surjective. Pour les corps de nombres , on démontre que est surjective si est un groupe nilpotent d’ordre impair, et on donne des contre-exemples pour des groupes d’ordre pair.
@article{JTNB_2000__12_2_489_0, author = {Gabriele Nebe}, title = {On the cokernel of the {Witt} decomposition map}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {489--501}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {2}, year = {2000}, zbl = {0993.11020}, mrnumber = {1823199}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_489_0/} }
TY - JOUR AU - Gabriele Nebe TI - On the cokernel of the Witt decomposition map JO - Journal de théorie des nombres de Bordeaux PY - 2000 SP - 489 EP - 501 VL - 12 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_489_0/ LA - en ID - JTNB_2000__12_2_489_0 ER -
Gabriele Nebe. On the cokernel of the Witt decomposition map. Journal de théorie des nombres de Bordeaux, Volume 12 (2000) no. 2, pp. 489-501. https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_489_0/
[ARS 97] Representation theory of Artin algebras. Cambridge studies in advanced math., 36Camb. Univers. Press (1997). | MR | Zbl
, , ,[CuR 81] Methods of representation theory, with applications to finite groups and orders. Vol. I. John Wiley & Sons. (1981). | MR | Zbl
, ,[Dre 75] Induction and structure theorems for orthogonal representations of finite groups. Annals of Math. 102 (1975), 291-325. | MR | Zbl
,[MiH 73] Symmetric bilinear forms. Springer Ergebnisse 73 (1973). | MR | Zbl
, ,[Knu 91] Quadratic and Hermitian Forms over Rings. Springer Grundlehren 294 (1991). | MR | Zbl
,[Miy 90] Equivariant Witt Groups of Finite Groups of Odd Order. J. Algebra 133 (1990), 197-210. | MR | Zbl
,[Mor 88] Maximal Hermitian forms over ZG. Comment. Math. Helv. 63 (1988), no.2, 209-225. | MR | Zbl
,[Mor 90] Equivariant Witt groups. Canad. Math. Bull. 33 (1990), 207-218. | MR | Zbl
,[Neb 99] Orthogonale Darstellungen endlicher Gruppen und Gruppenringe, Habilitationsschrift, RWTH Aachen, Aachener Beiträge zur Mathematik26, Verlag Mainz Aachen (1999). | MR | Zbl
,[Rei 75] Maximal orders. Academic Press (1975). | MR | Zbl
,[Scha 85] Quadratic and Hermitian Forms. Springer Grundlehren 270 (1985). | MR | Zbl
,[Ser 77] Linear Representations of Finite Groups. Springer GTM 42 (1977). | MR | Zbl
,[Tho 84] Bilinear Forms in Characteristic p and the Frobenius-Schur Indicator. Springer LNM 1185 (1984), 221-230.
,[Was 82] Introduction to cyclotomic fields. Springer GTM 83 (1982). | MR | Zbl
,