Indices in a Number Field
Journal de Théorie des Nombres de Bordeaux, Tome 29 (2017) no. 1, pp. 201-216.

Soient K un corps de nombres, A son anneau des entiers et p un nombre premier. Nous définissons une fonction μ K (p) qui compte le nombre de θ ¯A/pA d’indice multiple de p tout en en donnant une formule explicite. De plus, nous montrons que la valeur de μ K (p) détermine dans certains cas le type de décomposition de p dans K.

Let K be a number field, A be its ring of integers and p be a prime number. In this paper, we define a function μ K (p) which counts the number of θ ¯A/pA such that the index of θ is divisible by p. We give as well an explicit formula for it. Moreover, we show that the value of μ K (p) determines in some cases the splitting type of p in K.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.976
Classification : 11R04,  12Y05
Mots clés : Dedekind theorem, Common factor of indices.
@article{JTNB_2017__29_1_201_0,
     author = {Mohamed Ayad and Rachid Bouchenna and Omar Kihel},
     title = {Indices in a {Number} {Field}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {201--216},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {29},
     number = {1},
     year = {2017},
     doi = {10.5802/jtnb.976},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.976/}
}
Mohamed Ayad; Rachid Bouchenna; Omar Kihel. Indices in a Number Field. Journal de Théorie des Nombres de Bordeaux, Tome 29 (2017) no. 1, pp. 201-216. doi : 10.5802/jtnb.976. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.976/

[1] M Ayad; O. Kihel Common Divisors of values of Polynomials and Common Factors of Indices in a Number Field, Inter. J. Number Theory, Volume 7 (2011) no. 5, pp. 1173-1194 | Article

[2] L. Carlitz On abelian fields, Trans. Amer. Math. Soc., Volume 35 (1933), pp. 505-517 | Article

[3] L. Carlitz A note on common index divisors, Proc. Amer. Math. Soc., Volume 3 (1952), pp. 688-692 | Article

[4] P Erdős; J. Selfridge The product of consecutive integers is never a power, Illinois, J. Math., Volume 19 (1975), pp. 292-301

[5] M. Hall Indices in cubic fields, Bull. Amer. Math. Soc., Volume 43 (1937), pp. 104-108 | Article

[6] H. Hancock Foundations of the theory of algebraic numbers. Vol. II.: The general theory., Dover Publications, 1964, xxvi+654 pages

[7] T. Nagell Quelques résultats sur les diviseurs fixes de l’index des nombres entiers d’un corps algébrique, Ark. Mat., Volume 6 (1966), pp. 269-289 | Article

[8] B. K. Spearman; K. S. Williams Cubic fields with index 2, Monatsh. Math., Volume 134 (2002) no. 4, pp. 331-336 | Article

[9] B. K. Spearman; K. S. Williams The index of a Cyclic Quartic field, Monatsh. Math., Volume 140 (2003) no. 1, pp. 19-70 | Article

[10] E. Von Zylinski Zur Theorie der aussewescentlicher Discriminantenteiler algebraischer Korper, Math. Ann., Volume 73 (1913), p. 273-274 | Article