Let be a number field, be its ring of integers and be a prime number. In this paper, we define a function which counts the number of such that the index of is divisible by . We give as well an explicit formula for it. Moreover, we show that the value of determines in some cases the splitting type of in .
Soient un corps de nombres, son anneau des entiers et un nombre premier. Nous définissons une fonction qui compte le nombre de d’indice multiple de tout en en donnant une formule explicite. De plus, nous montrons que la valeur de détermine dans certains cas le type de décomposition de dans .
Accepted:
Published online:
Keywords: Dedekind theorem, Common factor of indices.
@article{JTNB_2017__29_1_201_0, author = {Mohamed Ayad and Rachid Bouchenna and Omar Kihel}, title = {Indices in a {Number} {Field}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {201--216}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {1}, year = {2017}, doi = {10.5802/jtnb.976}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.976/} }
TY - JOUR AU - Mohamed Ayad AU - Rachid Bouchenna AU - Omar Kihel TI - Indices in a Number Field JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 201 EP - 216 VL - 29 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.976/ DO - 10.5802/jtnb.976 LA - en ID - JTNB_2017__29_1_201_0 ER -
%0 Journal Article %A Mohamed Ayad %A Rachid Bouchenna %A Omar Kihel %T Indices in a Number Field %J Journal de théorie des nombres de Bordeaux %D 2017 %P 201-216 %V 29 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.976/ %R 10.5802/jtnb.976 %G en %F JTNB_2017__29_1_201_0
Mohamed Ayad; Rachid Bouchenna; Omar Kihel. Indices in a Number Field. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 1, pp. 201-216. doi : 10.5802/jtnb.976. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.976/
[1] Common Divisors of values of Polynomials and Common Factors of Indices in a Number Field, Inter. J. Number Theory, Volume 7 (2011) no. 5, pp. 1173-1194 | DOI
[2] On abelian fields, Trans. Amer. Math. Soc., Volume 35 (1933), pp. 505-517 | DOI
[3] A note on common index divisors, Proc. Amer. Math. Soc., Volume 3 (1952), pp. 688-692 | DOI
[4] The product of consecutive integers is never a power, Illinois, J. Math., Volume 19 (1975), pp. 292-301
[5] Indices in cubic fields, Bull. Amer. Math. Soc., Volume 43 (1937), pp. 104-108 | DOI
[6] Foundations of the theory of algebraic numbers. Vol. II.: The general theory., Dover Publications, 1964, xxvi+654 pages
[7] Quelques résultats sur les diviseurs fixes de l’index des nombres entiers d’un corps algébrique, Ark. Mat., Volume 6 (1966), pp. 269-289 | DOI
[8] Cubic fields with index 2, Monatsh. Math., Volume 134 (2002) no. 4, pp. 331-336 | DOI
[9] The index of a Cyclic Quartic field, Monatsh. Math., Volume 140 (2003) no. 1, pp. 19-70 | DOI
[10] Zur Theorie der aussewescentlicher Discriminantenteiler algebraischer Korper, Math. Ann., Volume 73 (1913), pp. 273-274 | DOI
Cited by Sources: