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Indices in a Number Field

par Mohamed AYAD, Rachid BOUCHENNA et Omar KIHEL

Résumé. Soient K un corps de nombres, A son anneau des
entiers et p un nombre premier. Nous définissons une fonction
µK(p) qui compte le nombre de θ ∈ A/pA d’indice multiple de p
tout en en donnant une formule explicite. De plus, nous montrons
que la valeur de µK(p) détermine dans certains cas le type de
décomposition de p dans K.

Abstract. Let K be a number field, A be its ring of integers
and p be a prime number. In this paper, we define a function
µK(p) which counts the number of θ ∈ A/pA such that the index
of θ is divisible by p. We give as well an explicit formula for it.
Moreover, we show that the value of µK(p) determines in some
cases the splitting type of p in K.

1. Introduction

Let K be a number field of degree n over Q and let A be its ring of
integers. Denote by Â the set of the elements of A which are primitive.
Let DK be the absolute discriminant of K. Let θ ∈ A and Fθ(x) its char-
acteristic polynomial. The discriminant of this polynomial has the form
D(θ) = [I(θ)]2DK , where I(θ) is 0 if θ /∈ Â or a positive integer if θ ∈ Â,
called the index of θ. Let I(K) = gcdθ∈Â I(θ). This integer is called the
index of K.

A prime number p is called a common factor of indices in K (c.f.i. for
short) if p | I(K).

Zylinski ([10]) (see also [7]) has shown that if p is a c.f.i. in K, then
p < n.

There are examples and criteria for some primes to be common factor of
indices in certain abelian extensions of Q (see [2], [3]).

For number fields of low degree, namely cubics fields and quartic fields,
one may consult [5], [8] and [9].
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In this paper, we define a function related to the field K and to the fixed
prime p as follows:

(1.1) µK(p) =
∣∣∣{θ ∈ A/pA, p | I(θ)

}∣∣∣
An explicit formula for this function µK(p) is given. Moreover, we show

that its values determine in some cases the splitting type of p in A. In [1],
a function ρp(K), similar to µK(p), is defined.

We fix some notations.
– Let F (x) ∈ Z [x] and p a prime number. Then F (x) denotes the
polynomial, with coefficients in Fp, obtained by reducing modulo
the prime p the coefficients of F (x).

– Let a be an integer, pe ‖ a means pe divides exactly a.
– If p (resp. P) is a prime number (resp. a prime ideal), then νp
(resp. νP) denotes the p-adic (resp. the P-adic) valuation.

– If E is a set, we denote by |E| its cardinality.
– If P is a prime ideal of a number field lying over some prime number
p, we denote by eP and fP its ramification index and its residual
degree over pZ respectively.

– If θ is an element of a number field K, we denote by Irr(θ,Q) and
Fθ(x) its minimal polynomial and its characteristic polynomial over
Q respectively.

– Recall that Fθ(x) = Irr(θ,Q)d where d = [K : Q [θ]].
– Let p be a prime number and f be a positive integer. We denote
by Np(f) the number of monic irreducible polynomials in Fp [x] of
degree f .

– If n and k are two positive integers, Ank denotes 0 if k > n and
n!

(n− k)! if k ≤ n.
– Let n be a positive integer and p1, . . . , pr be its distinct prime divi-
sors, then the product of these primes is called the radical of n and
will be denoted by rad(n).

2. Preliminary results

Let K be a number field of degree n, A be its ring of integers and θ an
element of A.

The following theorem, due to K. Hensel, is the most basic result on the
common factor of indices in a number field (see [6]).

Theorem 2.1. Let K be a number field, A be its ring of integers and p
be a prime number. Then, p is a c.f.i. in K if and only if there exists a
positive integer f such that the number of prime ideals of A lying over p of
residual degree equal to f is greater than Np(f).
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Let θ = θ + pA be the class of θ modulo p. The ideal

Eθ =
{
g(x) ∈ Fp [x] , g(θ) = 0

}
is a nonzero principal ideal of Fp [x] generated by some monic polynomial
g0(x) ∈ Fp [x].

We introduce the following definition.

Definition 2.2. We call a monic lift Mθ(p, x) of g0(x) in Z [x] the minimal
polynomial-congruence of θ modulo p.

Mθ(p, x) divides Irr(θ,Q) in Fp [x]. Let mK(p) = max degMθ(p, x),
where the maximum runs over the elements θ ∈ A such that p | I(θ).

For the next result, we need the following lemma.

Lemma 2.3. Let K be a a number field of degree n, A be its ring of integers
and p be a prime number. Then p | I(θ) if and only if degMθ(p, x) ≤ n−1.

Proof. See [6]. �

Theorem 2.4. Let K/Q be a number field, A be its ring of integers and p
a prime number. Suppose that the splitting of p in A is given by

pA = Pe1
1 · · · P

er
r

where the residual degree of Pi is fi for 1 ≤ i ≤ r. Let θ ∈ A, then p | I(θ)
if and only if one of the following conditions holds:
(i) There exists i ∈ {1, . . . , r} such that ei ≥ 2 and if G(x) = Irr(θ +
Pi,Fp), then G(x) satisfies G(θ) ≡ 0 (mod P2

i ).
(ii) There exists i∈{1, . . . , r} such that fi≥ 2 and deg Irr(θ+Pi,Fp)<fi.
(iii) There exists 1 ≤ i 6= j ≤ r, such that Irr(θ+Pi,Fp) = Irr(θ+Pj ,Fp).

Proof. Suppose that p | I(θ). Consider the factorization ofMθ(p, x) modulo
p to be:

Mθ(p, x) ≡ F1(x)h1 · · ·Fs(x)hs (mod p)
Since p | I(θ), then Lemma 2.3 implies that degMθ(p, x) ≤ n− 1. Suppose
that (ii) and (iii) do not hold, then s = r and for j ∈ {1, . . . , r}, there exists
a unique i = i(j) such that Fi(θ) ≡ 0 (mod Pj). Since degFi(j) = fPj and
degMθ(p, x) ≤ n − 1, then there exists j0 such that hi(j0) < ej0 . Suppose
that Pj0 ||Fi(j0)(θ), then P

hi(j0)
j0

||F hi(j0)
i(j0) (θ), which is a contradiction to Pej0

j0
|

Mθ(p, θ). Hence, P2
j0 | Fi(j0)(θ) and condition (i) holds.

We prove the converse. Suppose (ii) and let F (x) =
∏r
j=1 Fj(x)ej , where

Fj(x) is a monic lift in Z[x] of Irr(θ+Pj ,Fp). Since deg Irr(θ+Pi,Fp) < fi
and F (θ) ≡ 0 (mod p), then degMθ(p, x) ≤ n − 1. Hence by Lemma 2.3,
p | I(θ).

Suppose that (iii) holds. Let F (x) = (Fi(x))max(ei,ej)∏
k 6=i,j Fk(x)ek ,

where Fi(x) is a monic lift of Irr(θ + Pi,Fp) and Fk(x) is a monic lift
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of Irr(θ+Pk,Fp) in Z[x]. Clearly, F (θ) ≡ 0 (mod p) and degF (x) ≤ n−1.
Therefore, degMθ(p, x) ≤ n− 1. Hence, Lemma 2.3 implies that p | I(θ).

Suppose that (i) holds. Let F (x) = (Fi(x))(ei+ε)/2∏
j 6=i Fj(x)ej , where

ε =
{

0 if ei is even
1 if ei is odd

and Fk(x) is a monic lift of Irr(θ+Pk,Fp). As in the

preceding case, we have F (θ) ≡ 0 (mod p) and degF (x) ≤ n − 1. Hence
degMθ(p, x) ≤ n− 1 and Lemma 2.3 implies that p | I(θ). �

3. The number of θ ∈ A/pA such that p | I(θ)

Let K be a number field and A its ring of integers. For the definition of
a function related to p and to K, we need the following.

Lemma 3.1. Let α and β be elements of A such that α ≡ β (mod p). If
p | I(α), then p | I(β).

Proof. Set β = α+pγ where γ ∈ A and letM(x) be the minimal polynomial
congruence modulo p of α. Then M(β) = M(α + pγ) ≡ M(α) (mod p),
hence p | I(β) by Lemma 2.3. �

Define the integer µK(p) = |{ θ ∈ A/pA, p | I(θ)}|. If p is a c.f.i. in K,
then µK(p) = pn. We have the following.

Theorem 3.2. Let
pA = Pe1

1 · · · P
er
r

be the splitting of p as a product of prime ideals in A, where fPi = fi.
Suppose that r = r1 + . . . + rs where ri is a positive integer for each i =
1, . . . , s and that the ideals Pi for i = 1, . . . , r, are ordered such that

f1 = ... = fr1 := f∗1

fr1+1 = ... = fr1+r2 := f∗2

fr1+...+rs−1+1 = ... = fr1+...+rs := f∗s

Then,

(3.1) µK(p) = pn −
r∏
j=1

fj
∏
ej≥2

(pfj − 1)p
∑

ej≥2 fj(ej−2) s∏
j=1

A
Np(f∗j )
rj

By Hensel’s theorem, the result is true if p is a c.f.i. in K. Hence, for the
proof of this theorem, we suppose that p is not a c.f.i. in K.

We will use the following.

Lemma 3.3. Let P be a prime ideal of A lying above p of residual degree
d. Let G(x) ∈ Z [x] be monic and irreducible over Fp of degree d. Let ρ ∈ A
such that G(ρ) ≡ 0 (mod P) and let e ≥ 2 be an integer. Then, the number
of elements θ ∈ A incongruent modulo Pe and satisfying:
(3.2) θ ≡ ρ (mod P) and G(θ) /∈ P2
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is equal to (pd − 1)pd(e−2).

Proof. If G(ρ) ∈ P2, let µ ∈ P\P2 and τ = ρ + µ. Then, τ ≡ ρ (mod P)
and we have:

G(τ) = G(ρ) + µG′(ρ) + µ2G
′′(ρ)
2! + ...+ µd

G(d)(ρ)
d!

Since G′(ρ) /∈ P, then G(τ) /∈ P2. Hence, without loss of generality, we
may suppose that G(ρ) /∈ P2.

We first show that the number of elements θ ∈ A distinct modulo P2

and satisfying the condition (3.2) is equal to pd − 1.
In fact, the number of elements θ distinct modulo P2 and satisfying θ ≡ ρ

(mod P) is equal to |P/P2| = pd. We next show that:

A/P2 = {A0(ρ) +A1(ρ)G(ρ) | Ai(x) ∈ Fp [x] , degAi ≤ d− 1 for i = 0, 1}

Suppose that A0(ρ) +A1(ρ)G(ρ) ≡ B0(ρ) +B1(ρ)G(ρ) (mod P2). Then,
A0(ρ)−B0(ρ)+(A1(ρ)−B1(ρ))G(ρ) ≡ 0 (mod P2) , hence A0(ρ)−B0(ρ) ≡
0 (mod P) therefore A0(x) = B0(x). We deduce that A1(ρ) − B1(ρ) ≡ 0
(mod P), then A1(x) = B1(x).

Since the number of elements having the above form is equal to p2d, then
we have proved the equality of the two sets.

Let θ ∈ A/P2, θ = A0(ρ) + A1(ρ)G(ρ) such that θ ≡ ρ (mod P) and
G(θ) ∈ P2, then A0(ρ) = ρ and we have:

G(θ) = G(ρ+A1(ρ)G(ρ))

= G(ρ) +A1(ρ)G(ρ))G
′(ρ)
1! + ...+ [A1(ρ)G(ρ)]d G

(d)(ρ)
d!

≡ 0 (mod P2)

Hence, G(ρ) + A1(ρ)G(ρ)G′(ρ) ≡ 0 (mod )P 2. Then, we deduce that
1 + A1(ρ)G′(ρ) ≡ 0 (mod P). Since G′(ρ) /∈ P, then A1(ρ) is uniquely
determined. Therefore, the number of elements θ distinct modulo P2 and
satisfying the condition θ ≡ ρ (mod P) and G(θ) 6∈ P2 is equal to pd − 1.

Let θ1 ∈ A such that θ1 ≡ ρ (mod P) and G(θ1) 6∈ P2. Since |Pe/P2| =
pd(e−2), there exists pd(e−2) elements γ ∈ A incongruent modulo Pe satisfy-
ing γ ≡ θ1 (mod P2).

It follows that the number of elements θ ∈ A incongruent modulo Pe
and satisfying the condition (3.2) is equal to (pd − 1)pd(e−2). �

Proof of Theorem 3.2. To prove Theorem 3.2, we count the number, say
N , of θ̄ ∈ A/pA such that p - I(θ) and then µK(p) = pn −N .

By Lemma 3.1, we may define an equivalence relation in the set of ele-
ments θ ∈ A/pA such that p - I(θ) as follows:

(θ + Pe1
1 , ..., θ + Per

r ) ' (α+ Pe1
1 , ..., α+ Per

r )
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if and only if for each number i = 1, . . . , r,

Irr(θ + Pi,Fp) = Irr(α+ Pi,Fp)

We first count the number of elements in each equivalence class and
then the number of equivalence classes. Indeed we will see that all the
classes have the same cardinality. According to Theorem 2.4 an equivalence
class is defined by some given uplet (G1(x), ..., Gr(x)) of monic irreducible
polynomials over Fp such that degGi = fi for i = 1, ..., r and Gi(x) 6= Gj(x)
if i 6= j.

By Lemma 3.3, the number of elements θ ∈ A/Pei satisfying Gi(θ) ≡ 0
(mod Pi) and also the condition Gi(θ) /∈ Pei is equal to fi if ei = 1 and
equal to fi(pfi − 1)pfi(ei−2) if ei ≥ 2.

It follows that the number of

(θ1 + Pe1
1 , . . . , θr + Per

r ) ∈ A/Pe1
1 × ...×A/P

er
r

satisfying the conditions Gi(θi) ≡ 0 (mod Pi) for i = 1, . . . , r and the
condition Gi(θi) /∈ Pei for all i such that ei ≥ 2 is equal to

r∏
j=1

fj
∏
ej≥2

fj(pfj − 1)pfj(ej−2) = p

∑
ej≥2 fj(ej−2) r∏

j=1
fj
∏
ej≥2

(pfj − 1)

We now count the number of equivalence classes which means the number
of (G1(x), ..., Gr(x)) such that Gi(x) is a monic irreducible polynomial in
Fp [x] of degree fi and such that Gi(x) 6= Gj(x) for i 6= j. Recall that the
fi in Theorem 2.4 are labelled in a particular order.

For each j = 1, ..., s, there exists A
Np(f∗j )
rj possibilities. Then, the number

of equivalence classes is equal to
s∏
j=1

A
Np(f∗j )
rj , thus

N = p

∑
ej≥2 fj(ej−2) r∏

j=1
fj
∏
ej≥2

(pfj − 1)
s∏
j=1

A
Np(f∗j )
rj �

Proposition 3.4. Let s be the integer defined in the above theorem, then

ps | µK(p) and µK(p) ≡ 1 (mod p− 1)

Proof. Since for any j = 1, ..., s, we have that p | f∗jNp(f∗j ), then the first
assertion follows from Equation (3.1). For the proof of the second part, we
define an equivalence relation in A/pA as follows. The elements α and β of
A/pA are said to be equivalent if there exists λ ∈ F∗p such that β = λα. It is
clear that if α and β are equivalent and if p | I(β), then p | I(α). Except the
class of 0 which contains only one element, all the others contains exactly
p− 1 elements. Let u be the number of classes of the elements α such that
p | I(α). Then µK(p) = 1 + u(p− 1) and the result follows. �
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Definition 3.5. Let K be a number field, A be its ring of integers and p
be a prime number. We say that p has a special splitting in K if all the
prime ideals of A lying over pZ have the same ramification index e and also
the same residual degree f . Let r be the number of these prime ideals, then
n = efr. The elements e, f, r will be called the parameters of the special
splitting.

Notice that for a Galois number field K, all prime numbers have special
splittings in K.

Corollary 3.6. Let K be a number field of degree n and p be a prime
number having a special splitting in K with parameters e, f, r, then

µK(p) =
{
pn − f rANp(f)

r if e = 1
pn − f r(pf − 1)rprf(e−2)A

Np(f)
r if e ≥ 2

The following table, computed by using Equation (3.1), lists the values
of µK(p) for a quartic field K depending on the splitting type of p into a
product of prime ideals.

The splitting of p in A µK(p)
P4
P4

1
P2

2
P3

1P ′1
P2P ′2
P1P3
P2

1P2
P2

1P
′2
1

P1P
′
1P2

P1P
′
1P ′′21

P1P ′1P ′′1P ′′′1

p2

p3

p3+p2−p
2p3−p2

2p3+p2−2p
p2

2p3−p2

3p3−3p2+p
2p3−p2

4p3−5p2+2p
6p3−11p2+6p

Table 3.1.

The index of each prime ideal in Table 3.1 represents its residual degree
over pZ

Remark 3.7. Let p be a prime number, K be a number field of degree n,
A be its ring of integers and ω1, . . . , ωn be an integral basis of K. For any
element θ ∈ A of the form θ =

∑n
i=1 xiωi with xi ∈ Z and 0 ≤ xi ≤ p − 1

it is possible to determine if p | I(θ) or not. Therefore we may compute
µK(p) this way. On the other hand, using Equation (3.1), we may compute
the table of all the possible values of µK(p) in a number field of degree n
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depending on the splitting of p. Comparing the value found by the first way
with the values appearing in the table, it is possible to determine in some
cases the precise splitting of p in the given field or in any case to exclude
some type of splitting of p for the particular field we are considering. For
example, if in a quartic field we have found that the value of µK(2) is equal
to 8, 10 or 14, then, looking at the above table, one may find how the prime
2 splits in the field K.

Corollary 3.8. Let K and K ′ be two finite extensions of Q of the same
degree n, A and A′ be their respective rings of integers. Let p be a prime
number having special splittings in K and K ′ given by
(3.3) pA = Pe1 · · · Per
and
(3.4) pA′ = P ′e′1 · · · P ′e

′
r′

respectively, where the common degree of the Pi is f and the degree of the
P ′i is f ′. Suppose that µK(p) = µK′(p) and p is not a c.f.i. in K. Then p
is not a c.f.i. in K ′ and if f = f ′, then e = e′ and r = r′.

Proof. The first assertion is trivial. For the second, suppose by contradiction
that r < r′.

Case 1: e and e′ ≥ 2. We have
µK(p) = pn − f r(pf − 1)rprf(e−2)ANp(f)

r

= pn − pn(p
f − 1
pf

)r
r−1∏
k=0

f(Np(f)− k)
pf

(3.5)

and

µK′(p) = pn − pn(p
f − 1
pf

)r′
r′−1∏
k=0

f(Np(f)− k)
pf

(3.6)

Our aim is to order µK(p) and µK′(p), so we compare the number

a(p) = (p
f − 1
pf

)r
r−1∏
k=0

f(Np(f)− k)
pf

with

a′(p) = (p
f − 1
pf

)r′
r′−1∏
k=0

f(Np(f)− k)
pf

Because r < r′, then

(3.7) (p
f − 1
pf

)r > (p
f − 1
pf

)r′



Indices in a Number Field 209

We have
r′−1∏
k=0

f(Np(f)− k)
pf

=
r−1∏
k=0

f(Np(f)− k)
pf

r′−1∏
k=r

f(Np(f)− k)
pf

Clearly, for any k = r, . . . , r′ − 1, we have
f(Np(f)− k) < pf

hence,
r′−1∏
k=r

f(Np(f)− k)
pf

< 1

It follows that

(3.8)
r′−1∏
k=0

f(Np(f)− k)
pf

<
r−1∏
k=0

f(Np(f)− k)
pf

Now, Equations (3.7) and (3.8) yield a′(p) < a(p). Therefore, by Equa-
tions (3.5) and (3.6), we conclude that µK(p) < µK′(p) which is a contra-
diction.

Case 2: e = 1 and e′ ≥ 2. In this case, µK(p) = µK′(p) implies that

f rANp(f)
r = f r

′(pf − 1)r′pr′f(e′−2)A
Np(f)
r′

where r = e′r′. Hence,

(3.9) f r−
r
e′
r−1∏
k= r

e′

(Np(f)− k) = (pf − 1)
r
e′ p

r
e′ f(e′−2)

On the other hand, we have

f r−
r
e′
r−1∏
k= r

e′

(Np(f)− k) =
r−1∏
k= r

e′

[f(Np(f)− k)]

Clearly, for every nonzero integer k, we have
f(Np(f)− k) < f(Np(f) < pf − 1

Then

(3.10) f r−
r
e′
r−1∏
k= r

e′

(Np(f)− k) < (pf − 1)r−
r
e′

On the other hand, we have

(pf − 1)
r
e′ p

r
e′ f(e′−2) ≥ (pf − 1)

r
e′ (pf − 1)

r
e′ (e

′−2)

hence,

(3.11) (pf − 1)
r
e′ p

r
e′ f(e′−2) ≥ pf − 1)

r
e′ (e

′−1) = (pf − 1)r−
r
e′
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Now, Equations (3.11) and (3.10) are in contradiction with Equa-
tion (3.9). �

Remark 3.9. Let K and K ′ be two number fields of the same degree n
and let p be a prime number having special splittings in K and K

′ with
parameters e, f, r and e′, f ′, r′ respectively. Suppose that µK(p) = µK′(p)
and that p is not a c.f.i. in K. We are unable to prove that if e = e′

(resp. r = r′), then f = f ′.

We propose the following.

Conjecture 3.10. Suppose that µK(p) = µK′(p) for two number fields of
the same degree n ≥ 3 and for a prime number p , not a c.f.i. in K and
having special splittings in K and K ′, with parameters e, f, r and e′, f ′, r′
respectively. Then e = e′, f = f ′ and r = r′.

Theorem 3.12 below, shows that this conjecture is true for large primes.
The following lemma, due to P. Erdős and J. Selfridge (see [4]), will be used
in the proof of the next result.

Lemma 3.11. The diophantine equation

(3.12) (x+ 1) · · · (x+m) = yk

with k and m ≥ 2 has no solutions in nonnegative integers x and y.

Theorem 3.12. Let K and K ′ be two number fields of the same degree n ≥
3 and p be a prime having special splittings in K and K ′ with parameters
e, f, r and e′, f ′, r′ respectively. Suppose that p is not a c.f.i. in K, µK(p) =
µK′(p) and p > 2(n4 )

n
2−1. Then f = f ′ , e = e′ and r = r′.

Proof. We distinguish three cases: e and e′ ≥ 2 or e = e
′ = 1 or e = 1 and

e′ ≥ 2.

Case 1: e and e′ ≥ 2
The equality µK(p) = µK′(p) is equivalent to:

(3.13) f r(pf − 1)rprf(e−2)ANp(f)
r = f ′r

′(pf ′ − 1)r′pr′f ′(e′−2)A
Np(f ′)
r′

Equating the p-adic valuations of the two sides of Equation (3.13), we
obtain:

rf(e− 2) + f

rad(f) = r′f ′(e′ − 2) + f ′

rad(f ′)
Since efr = e′f ′r′, then

(3.14) 2(rf − r′f ′) = f

rad(f) −
f ′

rad(f ′)
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On the other hand, after dividing in Equation (3.13), by pνp(µK(p)) which
is equal to pνp(µK′ (p)), we obtain:

(3.15) f r(pf − 1)rNp(f)

p
f

rad(f)
(Np(f)− 1) . . . (Np(f)− (r − 1))

= f ′r
′(pf ′ − 1)r′Np(f ′)

p
f ′

rad(f ′)

(Np(f ′)− 1) . . . (Np(f ′)− (r′ − 1))

Since Np(f) =
(
pf −

∑
pf/l +

∑
pf/l1l2 − . . .± pf/ rad(f))/f , where the k-th

sum runs over selections of k distinct prime factors of f , then

Np(f)/pf/ rad(f)

=
(
pf−f/ rad(f) −

∑
pf/l−f/ rad(f) +

∑
pf/l1l2−f/ rad(f) − . . .± 1

)
/f

≡ (±1)/f (mod p)

Similarly, we have Np(f ′)/pf
′/ rad(f ′) ≡ (±1)/f ′ (mod p). Reducing Equa-

tion (3.15) modulo p and using the preceding congruences, we obtain:

εf r−1(r − 1)! ≡ ε′f ′r′−1(r′ − 1)! (mod p)
where ε and ε′ ∈ {1,−1}. We deduce that

(3.16) f r−1(r − 1)! ≡ ±f ′r′−1(r′ − 1)! (mod p)
Since e ≥ 2, then fr ≤ n/2, hence

f r−1(r − 1)! ≤ f r−1((1 + (r − 1))
2 )r−1

= (fr2 )r−1 ≤ (n4 )r−1 ≤ (n4 )n/2−1

Similarly, we have f ′r′−1(r′ − 1)! ≤ (n4 )
n
2−1. The assumption on the mag-

nitude of p, shows that we have the sign + in Equation (3.16) and then

(3.17) f r−1(r − 1)! = f ′r
′−1(r′ − 1)!

Without loss of generality, we may suppose that f ′ ≤ f , which in turn, by
Equation (3.17), implies r ≤ r′. Let λ = (r′−1)!

(r−1)! and let q be a prime factor
of f ′, then writing Equation (3.17) in the form f r−1 = λf ′r

′−1, we get
νq(λ) + (r′ − 1)νq(f ′) = (r − 1)νq(f) ≤ (r′ − 1)νq(f)

hence νq(f ′) ≤ νq(f). Using Equation (3.14), we show that, here in fact, we
have equality. Let t = νq(f ′). Suppose that νq(f) > t, then

νq
(
2(rf − r′f ′)

)
≥ t, while νq

( f

rad(f) −
f ′

rad(f ′)
)

= t− 1
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contradicting Equation (3.14). We conclude that for any prime factor of f ′
(if any), we have νq(f ′) = νq(f).

Suppose that f ′ > 1 and let q be a prime factor of f ′. If r < r′, then

νq(f r−1(r− 1)!) = (r− 1)νq(f) + νq((r− 1)!) < (r′− 1)νq(f ′) + νq((r′− 1)!)

contradicting Equation (3.17). It follows that r = r′ and then f = f ′ by
Equation (3.17) and the proof is complete in this case.

Suppose that f ′ = 1. In this case Equations (3.14) and (3.17) take the
form

(3.18) 2(rf − r′) = f

rad(f) − 1

and

(3.19) f r−1(r − 1)! = (r′ − 1)!

respectively.
• Suppose that f ′ = 1 and r ≥ 3. If r′ = r+1, then , by Equation (3.19),

f r−1 = r, hence a contradiction. If r′ ≥ r + 2, then from Equation (3.19),
we get the following f r−1 = (r′− 1)(r′− 2) · · · r. According to Lemma 3.11,
this equation has no solution. Therefore, Theorem 3.12 is proved in this
case.
• Suppose that f ′ = 1 and r = 2. From Equation (3.18), we conclude

that f/ rad(f) is odd, hence f 6≡ 0 (mod 4), thus r′ ≤ 3 by Equation (3.19).
We may reject the possibility r = 2 and r′ = 3, since in this case Equa-
tions (3.18) and (3.19) are contradictory. Therefore r′ = r = 2 and then
f = 1 by Equation (3.19) and the proof is complete in this case.
• Suppose that f ′ = 1 and r = 1. Equation (3.19) implies r′ ∈ {1, 2}. If

r′ = 2, then from Equation (3.18), we get

(3.20) f/ rad(f) = 2f − 3

Set f = αβ, where α and β are coprime positive integers such that α is
squarefree and β satisfies the condition: for any prime factor l of β, we have
νl(β) ≥ 2. Set β =

∏
lh. Then Equation (3.20) reads:

∏
lh−1 = 2αβ − 3.

We conclude that β = 1 or β = 32. In the first case, Equation (3.20)
becomes 1 = 2f − 3, that is f = 2. Straightforward computations, using
Corollary 3.6, shows that we cannot have µK(p) = µK′(p) if r = 1, f = 2
and r′ = 2, f ′ = 1. We conclude that r′ = 1 = r. Equation (3.18) takes
the form f/ rad(f) = 2f − 1. Using the representation of f as above, we
obtain

∏
lh−1 = 2αβ − 1. It follows that β = 1 and then 2α = 2, thus

f = α = 1 = f ′ and the theorem is proved in this case.
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Case 2: e = e′ = 1
In this case, the condition µK(p) = µK′(p) implies:

(3.21) f rANp(f)
r = f ′r

′
A
Np(f ′)
r′

Here also, we may assume that f ′ ≤ f and r ≤ r′. As in case 1, equating the
p-adic valuations of the two sides of Equation (3.21) and reducing modulo
p these sides after dividing them by the greatest power of p dividing them,
we obtain the following equations:

f

rad(f) = f ′

rad(f ′)(3.22)

f r−1(r − 1)! = f ′r
′−1(r′ − 1)!(3.23)

As above write f and f ′ in the forms f = αβ and f ′ = α′β′. Equation (3.22)
implies β = β′. Equation (3.23) takes the form:

(3.24) αr−1βr−1 = α′r
′−1βr

′−1(r′ − 1) · · · r
Suppose that r < r′, then Equation (3.24) implies that β = 1. It follows
that
(3.25) αr−1 = α′r

′−1(r′ − 1) · · · r
Since α and α′ are squarefree, then α′ = 1, thus f ′ = 1 and Equation (3.25)
becomes
(3.26) αr−1 = (r′ − 1) · · · r
We may exclude the case r = 1, otherwise we have r′ = 2 by Equation (3.26)
and then n = e′f ′r′ = 2, which is rejected by assumption. If r = 2, then
by Equation (3.26), α = (r′ − 1) · · · r. Since α is squarefree, then r′ = 3 or
r′ = 4. If r′ = 3, then efr = 4 and e′f ′r′ = 3, which is a contradiction. The
same arguments may reject the case r = 2 and r′ = 4. It remains to consider
the case r′ > r > 2. If r′ ≥ r + 2, then, according to Lemma 3.11, already
used above, Equation (3.26) has no nonnegative integral solutions. So we
reject this possibility. If r′ = r + 1, then r = f r−1 by Equation (3.26). We
deduce that efr = f r and e′f ′r′ = r+1 = f r−1+1, which is a contradiction.
We conclude that r = r′ and then obviously f = f ′.

Case 3: e = 1 and e′ ≥ 2
By the same reasonning as in cases 1 and 2, the equation µK(p) = µK′(p)

implies the following two
f

rad(f) = f ′

rad(f ′) + r′f ′(e′ − 2)(3.27)

f r−1(r − 1)! = f ′r
′−1(r′ − 1)!(3.28)

Since e′ ≥ 2 and efr = e′f ′r′, then fr ≥ 2f ′r′, so fr > f ′r′. This implies
r > r′ or f > f ′.
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• Suppose that r > r′. If f = 1, then from Equation (3.28), we get

(3.29) f ′r
′−1 = (r − 1) · · · r′

If moreover r = r′+1, then r′ = f ′r
′−1 by Equation (3.29). We deduce that

efr = r = r′+1 = f ′r
′−1 +1 and e′f ′r′ ≥ 2f ′r′ , which is a contradiction. So

we may suppose that r ≥ r′+2. By Lemma 3.11, applied to Equation (3.29),
we conclude that r′ = 2 and
(3.30) f ′ = (r − 1)!
Since f = 1, then by Equation (3.27), f ′ is squarefree and e′ = 2. Since
r ≥ r′ + 2, then r ≥ 4. Equation (3.30) implies that r = 4 and then f ′ = 6.
It follows that efr = 4 and e′f ′r′ = 24 which is a contradiction. Suppose
now that f ≥ 2. From Equation (3.28), we deduce that

(3.31) f ′r
′−1 = f r−1(r − 1) · · · r′

It follows that f r−1 | f ′r′−1. Let q be a prime factor of f , then (r−1)νq(f) ≤
(r′ − 1)νq(f ′) < (r − 1)νq(f ′), thus νq(f) < νq(f ′). We deduce that f | f ′

and f

rad(f) <
f ′

rad(f ′) , contradicting Equation (3.27).

• Suppose that f > f ′. Since we have considered the case r > r′, we may
suppose that r ≤ r′. If r = r′, then by Equation (3.28), f = f ′, which is a
contradiction. So we suppose that r < r′. From Equation (3.28), we obtain

(3.32) f r−1 = f ′r
′−1(r′ − 1) · · · r

Suppose first that f ′ = 1, then f r−1 = (r′ − 1) · · · r. If morover r′ = r + 1,
then r = f r−1 and r′ = f r−1 + 1. In this situation Equation (3.27) takes
the form

(3.33) f

rad(f) = 1 + (f r−1 + 1)(e′ − 2)

This equation has no solution except possibly if e′ = 2 or r = 1. In the
first case, we have efr = f r and e′f ′r′ = 2(f r−1 + 1), which is impossible.
In the second case, we have efr = f and e′f ′r′ = 2e′, hence 2e′ = f . On
the other hand, by Equation (3.33), we get f/ rad(f) = 2e′− 3. We deduce
that f/ rad(f) = f − 3. Using the representation f = αβ, it is seen that
this equation has no solution. We conclude that r′ ≥ r + 2. Lemma 3.11
applied to Equation (3.31) implies r = 2 and f = (r′ − 1) · · · r. Since
efr = r(r′−1) · · · r and r is even, then so are efr and e′f ′r′. It follows that
e′ is even or r′ is even. In any case Equation (3.27) implies that f/ rad(f)
is odd. We deduce that f 6≡ 0 (mod 4). From the identity f = (r′ − 1) · · · r
and the condition r′ ≥ r + 2, we conclude that r′ = 4 and f = 6. Hence
e′ = 2 by Equation (3.27) and then efr = 12, e′f ′r′ = 8, which is a
contradiction. It remains to consider the case f > f ′ ≥ 2 and r < r′. From
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Equation (3.31), we conclude that f ′r′−1 | f r−1. Let q be a prime factor of
f ′, then (r′ − 1)νq(f ′) ≤ (r − 1)νq(f) < (r′ − 1)νq(f), thus

(3.34) νq(f ′) < νq(f)

Since f ′ ≥ 2, then f ′ has a prime factor say q0. Let h = νq0(f ′), then

νq0

(
r′f ′(e′ − 2)

)
≥ h and νq0(f ′/ rad(f ′)) = h− 1

hence
νq0

(
r′f ′(e′ − 2)

)
+ f ′/ rad(f ′)) = h− 1

By Equation (3.27), we conclude that νq0(f/ rad(f)) = h−1, hence νq0(f) =
h = νq0(f ′), contradicting Equation (3.34) and the proof of Theorem 3.12
is complete. �

Remark 3.13. It is not possible to remove the condition n ≥ 3 in Theo-
rem 3.12, since for any quadratic number fieldK, and any prime p, whatever
is its splitting, we have µK(p) = p.

In the same theorem, the condition, p is not a c.f.i. in K is necessary
only for small n. Because if n ≥ 7, then n ≤ 2(n4 )

n
2−1, so that, according

to Zylinsky’s result, any prime number larger than or equal to this last
number is not a c.f.i. in K.

It is seen, through Equation (3.1), that µK(p) is a polynomial in p with
integral coefficients. These polynomials are computed for quartic fields (see
Table 3.1). Theorem 3.12 implies that if restrict ourselves to primes having
special splittings, then the list of polynomials which are obtained, are all
distinct.
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