This paper investigates the density of hypersurfaces in a projective normal simplicial toric variety over a finite field having a quasismooth intersection with a given quasismooth subscheme. The result generalizes the formula found by B. Poonen for smooth projective varieties. As an application, we further analyze the density of hypersurfaces with bounds on their number of singularities and on the length of their singular schemes.
Cet article a pour objet la densité des hypersurfaces dans une variété torique projective, normale et simpliciale sur un corps fini ayant une intersection quasi-lisse avec un sous-schéma quasi-lisse fixé. Le résultat géneralise la formule trouvée par B. Poonen pour des variétés projectives lisses. Comme application, nous analysons en outre la densité des hypersurfaces dont le nombre des singularités et la longueur du schéma singulier sont bornés.
Revised:
Accepted:
Published online:
Keywords: Bertini theorems, finite fields, toric varieties
Niels Lindner 1

@article{JTNB_2017__29_1_261_0, author = {Niels Lindner}, title = {Density of quasismooth hypersurfaces in simplicial toric varieties}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {261--288}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {1}, year = {2017}, doi = {10.5802/jtnb.979}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.979/} }
TY - JOUR AU - Niels Lindner TI - Density of quasismooth hypersurfaces in simplicial toric varieties JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 261 EP - 288 VL - 29 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.979/ DO - 10.5802/jtnb.979 LA - en ID - JTNB_2017__29_1_261_0 ER -
%0 Journal Article %A Niels Lindner %T Density of quasismooth hypersurfaces in simplicial toric varieties %J Journal de théorie des nombres de Bordeaux %D 2017 %P 261-288 %V 29 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.979/ %R 10.5802/jtnb.979 %G en %F JTNB_2017__29_1_261_0
Niels Lindner. Density of quasismooth hypersurfaces in simplicial toric varieties. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 1, pp. 261-288. doi : 10.5802/jtnb.979. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.979/
[1] On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J., Volume 75 (1994) no. 2, pp. 293-338 | DOI
[2] Invariants of hypersurface singularities in positive characteristic, Rev. Mat. Complut., Volume 25 (2012) no. 1, pp. 61-85 | DOI
[3] Factorial threefold hypersurfaces, J. Algebraic Geom., Volume 19 (2010) no. 4, pp. 781-791 | DOI
[4] The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., Volume 4 (1995) no. 1, pp. 17-50 erratum J. Algebraic Geom. 23, no. 2, 393-398 (2014)
[5] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, 2011, xxiv+841 pages
[6] A Nullstellensatz with nilpotents and Zariski’s Main Lemma on holomorphic functions, J. Algebra, Volume 58 (1979), pp. 157-161 | DOI
[7] Semiample Bertini theorems over finite fields, Duke Math. J, Volume 164 (2015) no. 1, pp. 1-38 | DOI
[8] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages
[9] Number of points of varieties in finite fields, Amer. J. Math, Volume 76 (1954), pp. 819-827 | DOI
[10] Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) (1970), pp. 29-100
[11] Bertini theorems over finite fields, Ann. Math., Volume 160 (2005) no. 3, pp. 1099-1127 | DOI
Cited by Sources: