The function
La fonction
Accepté le :
Publié le :
Mots-clés : Arakelov divisor, effectivity divisor, size function,
Ha Thanh Nguyen Tran 1

@article{JTNB_2017__29_1_243_0, author = {Ha Thanh Nguyen Tran}, title = {The size function for quadratic extensions of complex quadratic fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {243--259}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {1}, year = {2017}, doi = {10.5802/jtnb.978}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.978/} }
TY - JOUR AU - Ha Thanh Nguyen Tran TI - The size function for quadratic extensions of complex quadratic fields JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 243 EP - 259 VL - 29 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.978/ DO - 10.5802/jtnb.978 LA - en ID - JTNB_2017__29_1_243_0 ER -
%0 Journal Article %A Ha Thanh Nguyen Tran %T The size function for quadratic extensions of complex quadratic fields %J Journal de théorie des nombres de Bordeaux %D 2017 %P 243-259 %V 29 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.978/ %R 10.5802/jtnb.978 %G en %F JTNB_2017__29_1_243_0
Ha Thanh Nguyen Tran. The size function for quadratic extensions of complex quadratic fields. Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 1, pp. 243-259. doi : 10.5802/jtnb.978. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.978/
[1] Lattices and number fields, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) (Contemp. Math., Amer. Math. Soc.), Volume 241 (1999), pp. 69-84
[2] A course in computational algebraic number theory, Graduate Texts in Mathematics, 138, Springer-Verlag, Berlin, 1993, xxi+534 pages
[3] Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp., Volume 44 (1985), pp. 463-471 | DOI
[4] Enumeration of totally complex quartic fields of small discriminant, Computational number theory (Debrecen, 1989) (1991), pp. 129-138
[5] The size function
[6] The size function
[7] Effectivity of Arakelov divisors and the theta divisor of a number field, Selecta Math. (N.S.), Volume 6 (200) no. 4, pp. 377-398
[8] The size function for number fields, Universiteit van Amsterdam (The Netherlands) (1999) (Ph. D. Thesis)
[9] An arithmetic analogue of Clifford’s theorem, J. Théor. Nombres Bordeaux, Volume 13 (2001) no. 1, pp. 143-156 21st Journées Arithmétiques (Rome, 2001) | DOI
[10] Lattices, Algorithmic number theory: lattices, number fields, curves and cryptography (Math. Sci. Res. Inst. Publ.), Volume 44, Cambridge Univ. Press, 2008, pp. 127-181
[11] Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory, Volume 9 (1977), pp. 459-492 | DOI
[12] Computing Arakelov class groups, Algorithmic number theory: lattices, number fields, curves and cryptography (Math. Sci. Res. Inst. Publ.), Volume 44, Cambridge Univ. Press, 2008, pp. 447-495
Cité par Sources :