The function for a number field is an analogue of the dimension of the Riemann–Roch spaces of divisors on an algebraic curve. In this paper, we prove the conjecture of van der Geer and Schoof about the maximality of at the trivial Arakelov divisor for quadratic extensions of complex quadratic fields.
La fonction pour un corps de nombre est un analogue de la dimension des espaces vectoriels de Riemann–Roch des diviseurs sur une courbe algébrique. Dans cet article, nous montrons une conjecture de van der Geer et Schoof sur la maximalité de au diviseur d’Arakelov trivial pour les extensions quadratiques de corps quadratiques imaginaires.
Accepted:
Published online:
Keywords: Arakelov divisor, effectivity divisor, size function, $h^0$, line bundle
@article{JTNB_2017__29_1_243_0, author = {Ha Thanh Nguyen Tran}, title = {The size function for quadratic extensions of complex quadratic fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {243--259}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {1}, year = {2017}, doi = {10.5802/jtnb.978}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.978/} }
TY - JOUR AU - Ha Thanh Nguyen Tran TI - The size function for quadratic extensions of complex quadratic fields JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 243 EP - 259 VL - 29 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.978/ DO - 10.5802/jtnb.978 LA - en ID - JTNB_2017__29_1_243_0 ER -
%0 Journal Article %A Ha Thanh Nguyen Tran %T The size function for quadratic extensions of complex quadratic fields %J Journal de théorie des nombres de Bordeaux %D 2017 %P 243-259 %V 29 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.978/ %R 10.5802/jtnb.978 %G en %F JTNB_2017__29_1_243_0
Ha Thanh Nguyen Tran. The size function for quadratic extensions of complex quadratic fields. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 1, pp. 243-259. doi : 10.5802/jtnb.978. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.978/
[1] Lattices and number fields, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) (Contemp. Math., Amer. Math. Soc.), Volume 241 (1999), pp. 69-84
[2] A course in computational algebraic number theory, Graduate Texts in Mathematics, 138, Springer-Verlag, Berlin, 1993, xxi+534 pages
[3] Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp., Volume 44 (1985), pp. 463-471 | DOI
[4] Enumeration of totally complex quartic fields of small discriminant, Computational number theory (Debrecen, 1989) (1991), pp. 129-138
[5] The size function for quadratic number fields, J. Théor. Nombres Bordeaux, Volume 13 (2001) no. 1, pp. 125-135 21st Journées Arithmétiques (Rome, 2001) | DOI
[6] The size function for a pure cubic field, Acta Arith., Volume 111 (2004) no. 3, pp. 225-237 | DOI
[7] Effectivity of Arakelov divisors and the theta divisor of a number field, Selecta Math. (N.S.), Volume 6 (200) no. 4, pp. 377-398
[8] The size function for number fields, Universiteit van Amsterdam (The Netherlands) (1999) (Ph. D. Thesis)
[9] An arithmetic analogue of Clifford’s theorem, J. Théor. Nombres Bordeaux, Volume 13 (2001) no. 1, pp. 143-156 21st Journées Arithmétiques (Rome, 2001) | DOI
[10] Lattices, Algorithmic number theory: lattices, number fields, curves and cryptography (Math. Sci. Res. Inst. Publ.), Volume 44, Cambridge Univ. Press, 2008, pp. 127-181
[11] Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory, Volume 9 (1977), pp. 459-492 | DOI
[12] Computing Arakelov class groups, Algorithmic number theory: lattices, number fields, curves and cryptography (Math. Sci. Res. Inst. Publ.), Volume 44, Cambridge Univ. Press, 2008, pp. 447-495
Cited by Sources: