We construct several families of perfect sublattices with minimum of . In particular, the number of -dimensional perfect integral lattices with minimum grows faster than for every exponent .
Cet article présente des constructions de plusieurs familles de sous-réseaux parfaits de avec minimum . En particulier, le nombre de tels réseaux parfaits de dimension croît plus vite que tout polynôme en .
Revised:
Accepted:
Published online:
Classification: 11H55, 11T06, 20K01, 05B30, 05E30
Keywords: Perfect lattice, finite abelian group, projective plane, equiangular system, Schläfli graph, Sidon set, Craig lattice
Author's affiliations:
@article{JTNB_2015__27_3_655_0, author = {Roland Bacher}, title = {Constructions of some perfect integral lattices with minimum $4$}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {655--687}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {3}, year = {2015}, doi = {10.5802/jtnb.918}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.918/} }
TY - JOUR TI - Constructions of some perfect integral lattices with minimum $4$ JO - Journal de Théorie des Nombres de Bordeaux PY - 2015 DA - 2015/// SP - 655 EP - 687 VL - 27 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.918/ UR - https://doi.org/10.5802/jtnb.918 DO - 10.5802/jtnb.918 LA - en ID - JTNB_2015__27_3_655_0 ER -
Roland Bacher. Constructions of some perfect integral lattices with minimum $4$. Journal de Théorie des Nombres de Bordeaux, Volume 27 (2015) no. 3, pp. 655-687. doi : 10.5802/jtnb.918. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.918/
[1] N. D. Elkies, « Answer to Mathoverflow question: A curious identity related to finite fields », .
[2] J. Martinet, Les réseaux parfaits des espaces euclidiens, Mathématiques. [Mathematics], Masson, Paris, 1996, iv+439 pages. | MR: 1434803 | Zbl: 0869.11056
[3] —, Perfect lattices in Euclidean spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 327, Springer-Verlag, Berlin, 2003, xxii+523 pages. | MR: 1957723
Cited by Sources: