Consider a strongly -multiplicative sequence and a prime . Studying its -rarefaction consists in characterizing the asymptotic behaviour of the sums of the first terms indexed by the multiples of . The integer values of the “norm” -variate polynomial
where is a primitive -th root of unity, and determine this asymptotic behaviour. It will be shown that a combinatorial method can be applied to The method enables deducing functional relations between the coefficients as well as various properties of the coefficients of , in particular for and . This method provides relations between binomial coefficients. It gives new proofs of the two identities and (the -th Lucas number). The sign and the residue modulo of the symmetric polynomials of can also be obtained. An algorithm for computation of coefficients of is developed.
Pour une suite fortement -multiplicative donnée et un nombre premier fixé, l’étude de la -raréfaction consiste à caractériser le comportement asymptotique des sommes des premiers termes d’indices multiples de . Les valeurs entières du polynôme « norme » trivarié
où est une racine -ième primitive de l’unité, déterminent ce comportement asymptotique. On montre qu’une méthode combinatoire s’applique à qui permet d’établir de nouvelles relations fonctionnelles entre les coefficients de ce polynôme « norme », diverses propriétés des coefficients de , notamment pour . Cette méthode fournit des relations entre les coefficients binomiaux, de nouvelles preuves des deux identités (le -ième nombre de Lucas) et , le signe et le résidu modulo des polynômes symétriques des . Une méthode algorithmique de recherche des coefficients de est développée.
Keywords: Thue-Morse sequence, b-multiplicative sequences, rarefactions, cyclotomic extensions, Lucas numbers, binomial coefficients, set partitions.
Alexandre Aksenov 1
@article{JTNB_2015__27_3_625_0, author = {Alexandre Aksenov}, title = {Counting solutions without zeros or repetitions of a linear congruence and rarefaction in $b$-multiplicative sequences.}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {625--654}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {3}, year = {2015}, doi = {10.5802/jtnb.917}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.917/} }
TY - JOUR AU - Alexandre Aksenov TI - Counting solutions without zeros or repetitions of a linear congruence and rarefaction in $b$-multiplicative sequences. JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 625 EP - 654 VL - 27 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.917/ DO - 10.5802/jtnb.917 LA - en ID - JTNB_2015__27_3_625_0 ER -
%0 Journal Article %A Alexandre Aksenov %T Counting solutions without zeros or repetitions of a linear congruence and rarefaction in $b$-multiplicative sequences. %J Journal de théorie des nombres de Bordeaux %D 2015 %P 625-654 %V 27 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.917/ %R 10.5802/jtnb.917 %G en %F JTNB_2015__27_3_625_0
Alexandre Aksenov. Counting solutions without zeros or repetitions of a linear congruence and rarefaction in $b$-multiplicative sequences.. Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 3, pp. 625-654. doi : 10.5802/jtnb.917. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.917/
[1] A. Aksenov, « Raréfaction dans les suites -multiplicatives », PhD Thesis, University of Grenoble (France), 2014.
[2] G. Alkauskas, « Dirichlet series associated with strongly -multiplicative functions », Ramanujan J. 8 (2004), no. 1, p. 13-21. | MR | Zbl
[3] R. C. Baker, G. Harman & J. Pintz, « The difference between consecutive primes. II », Proc. London Math. Soc. (3) 83 (2001), no. 3, p. 532-562. | MR | Zbl
[4] A. T. Benjamin & J. J. Quinn, « The Fibonacci numbers—exposed more discretely », Math. Mag. 76 (2003), no. 3, p. 182-192. | MR | Zbl
[5] F. M. Dekking, « On the distribution of digits in arithmetic sequences », in Seminar on number theory, 1982–1983 (Talence, 1982/1983), Univ. Bordeaux I, Talence, 1983, p. Exp. No. 32, 12. | MR | Zbl
[6] M. Drmota & J. F. Morgenbesser, « Generalized Thue-Morse sequences of squares », Israel J. Math. 190 (2012), p. 157-193. | MR | Zbl
[7] M. Drmota & M. Skałba, « Rarified sums of the Thue-Morse sequence », Trans. Amer. Math. Soc. 352 (2000), no. 2, p. 609-642. | MR | Zbl
[8] A. O. Gelʼfond, « Sur les nombres qui ont des propriétés additives et multiplicatives données », Acta Arith. 13 (1967/1968), p. 259-265. | MR | Zbl
[9] S. Goldstein, K. A. Kelly & E. R. Speer, « The fractal structure of rarefied sums of the Thue-Morse sequence », J. Number Theory 42 (1992), no. 1, p. 1-19. | MR | Zbl
[10] P. J. Grabner, « Completely -multiplicative functions: the Mellin transform approach », Acta Arith. 65 (1993), no. 1, p. 85-96. | MR | Zbl
[11] R. Hofer, « Coquet-type formulas for the rarefied weighted Thue-Morse sequence », Discrete Math. 311 (2011), no. 16, p. 1724-1734. | MR | Zbl
[12] J. P. S. Kung, G.-C. Rota & C. H. Yan, Combinatorics: the Rota way, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2009, xii+396 pages. | MR | Zbl
[13] F. Luca & R. Thangadurai, « On an arithmetic function considered by Pillai », J. Théor. Nombres Bordeaux 21 (2009), no. 3, p. 693-699. | Numdam | MR | Zbl
[14] M. Petkovšek, H. S. Wilf & D. Zeilberger, , A K Peters, Ltd., Wellesley, MA, 1996, With a foreword by Donald E. Knuth, With a separately available computer disk, xii+212 pages. | MR | Zbl
[15] G.-C. Rota, « On the foundations of combinatorial theory. I. Theory of Möbius functions », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), p. 340-368 (1964). | MR | Zbl
[16] J. A. Sloane, « On-Line Encyclopedia of Integer Sequences », http://oeis.org.
[17] R. P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original, xii+325 pages. | MR | Zbl
[18] B. M. Trager, « Algebraic factoring and rational function integration. », Symbolic and algebraic computation, Proc. 1976 ACM Symp., Yorktown Heights/N.Y., 219-226 (1976)., 1976. | Zbl
Cited by Sources: