Flows of Mellin transforms with periodic integrator
Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 2, pp. 455-469.

Nous étudions les tranformées de Mellin N ^(s)= 1- x -s dN(x) pour lesquelles N(x)-x est périodique de période 1 dans le but d’examiner les “flots” de telles fonctions vers la fonction ζ(s) de Riemann et la possibilité de prouver l’hypothèse de Riemann avec cette approche. Nous montrons que, à part le cas trivial N(x)=x, la borne supérieure des parties réelles des zéros de n’importe quelle telle fonction est au moins 1 2.

Nous examinons un flot particulier de telles fonctions {N λ ^} λ1 qui converge localement uniformément vers ζ(s) quand λ1, et montrons qu’elles présentent un aspect similaire à ζ(s). Par exemple, N λ ^(s) a à peu près T 2πlogT 2π-T 2π zéros dans la bande critique jusqu’à la hauteur T, et une infinité de zéros négatifs, environ aux points λ-1-2n (n).

We study Mellin transforms N ^(s)= 1- x -s dN(x) for which N(x)-x is periodic with period 1 in order to investigate ‘flows’ of such functions to Riemann’s ζ(s) and the possibility of proving the Riemann Hypothesis with such an approach. We show that, excepting the trivial case where N(x)=x, the supremum of the real parts of the zeros of any such function is at least 1 2.

We investigate a particular flow of such functions {N λ ^} λ1 which converges locally uniformly to ζ(s) as λ1, and show that they exhibit features similar to ζ(s). For example, N λ ^(s) has roughly T 2πlogT 2π-T 2π zeros in the critical strip up to height T and an infinite number of negative zeros, roughly at the points λ-1-2n (n).

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.771
Classification : 11M41,  30C15
Mots clés : Zeros of Mellin transforms, Lindelöf function
@article{JTNB_2011__23_2_455_0,
     author = {Titus Hilberdink},
     title = {Flows of {Mellin} transforms with periodic integrator},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {455--469},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {2},
     year = {2011},
     doi = {10.5802/jtnb.771},
     mrnumber = {2817939},
     zbl = {1268.11115},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.771/}
}
TY  - JOUR
AU  - Titus Hilberdink
TI  - Flows of Mellin transforms with periodic integrator
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2011
DA  - 2011///
SP  - 455
EP  - 469
VL  - 23
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.771/
UR  - https://www.ams.org/mathscinet-getitem?mr=2817939
UR  - https://zbmath.org/?q=an%3A1268.11115
UR  - https://doi.org/10.5802/jtnb.771
DO  - 10.5802/jtnb.771
LA  - en
ID  - JTNB_2011__23_2_455_0
ER  - 
Titus Hilberdink. Flows of Mellin transforms with periodic integrator. Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 2, pp. 455-469. doi : 10.5802/jtnb.771. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.771/

[1] T. M. Apostol, Introduction to Analytic Number Theory. Springer, 1976. | MR 434929 | Zbl 1154.11300

[2] P. T. Bateman and H. G. Diamond, Analytic Number Theory. World Scientific Publishing, 2004. | MR 2111739 | Zbl 1074.11001

[3] T. W. Hilberdink, A lower bound for the Lindelöf function associated to generalised integers. J. Number Theory 122 (2007), 336–341. | MR 2292259 | Zbl 1159.11036

[4] T. W. Hilberdink and M. L. Lapidus, Beurling zeta functions, Generalised Primes, and Fractal Membranes. Acta Appl Math 94 (2006), 21–48. | MR 2271675 | Zbl 1133.11057

[5] E. C. Titchmarsh, The Theory of Functions. Second edition, Oxford University Press, 1986. | MR 882550 | Zbl 0336.30001

[6] E. C. Titchmarsh, The Theory of the Riemann Zeta-function. Second edition, Oxford University Press, 1986. | MR 882550 | Zbl 0601.10026

Cité par Sources :