We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.
Nous généralisons la construction due à L. J. Mordell de surfaces cubiques pour lesquelles le principe de Hasse est faux.
@article{JTNB_2011__23_2_471_0, author = {J\"org Jahnel}, title = {More cubic surfaces violating the {Hasse} principle}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {471--477}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {2}, year = {2011}, doi = {10.5802/jtnb.772}, mrnumber = {2817940}, zbl = {1233.11033}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.772/} }
TY - JOUR AU - Jörg Jahnel TI - More cubic surfaces violating the Hasse principle JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 471 EP - 477 VL - 23 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.772/ DO - 10.5802/jtnb.772 LA - en ID - JTNB_2011__23_2_471_0 ER -
%0 Journal Article %A Jörg Jahnel %T More cubic surfaces violating the Hasse principle %J Journal de théorie des nombres de Bordeaux %D 2011 %P 471-477 %V 23 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.772/ %R 10.5802/jtnb.772 %G en %F JTNB_2011__23_2_471_0
Jörg Jahnel. More cubic surfaces violating the Hasse principle. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 2, pp. 471-477. doi : 10.5802/jtnb.772. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.772/
[1] J. Jahnel, Brauer groups, Tamagawa measures, and rational points on algebraic varieties. Habilitation thesis, Göttingen, 2008.
[2] Yu. I. Manin, Cubic forms, algebra, geometry, arithmetic. North-Holland Publishing Co. and American Elsevier Publishing Co., Amsterdam-London and New York, 1974. | MR | Zbl
[3] L. J. Mordell, On the conjecture for the rational points on a cubic surface. J. London Math. Soc. 40 (1965), 149–158. | MR | Zbl
[4] Sir Peter Swinnerton-Dyer, Two special cubic surfaces. Mathematika 9 (1962), 54–56. | MR | Zbl
[5] J. Tate, Global class field theory. In: Algebraic number theory, Edited by J. W. S. Cassels and A. Fröhlich, Academic Press and Thompson Book Co., London and Washington, 1967. | MR | Zbl
Cited by Sources: