Computations with Witt vectors of length 3
Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 2, pp. 417-454.

Dans cet article, nous décrivons comment effectuer des calculs avec les vecteurs de Witt de longueur 3 d’une manière efficace et donnons une formule qui permet de calculer directement la troisième coordonnée de la transformée de Greenberg d’un polynôme. Nous appliquons ces résultats afin d’obtenir des renseignements sur la troisième coordonnée de l’invariant j du relèvement canonique en fonction de l’invariant j de la courbe elliptique ordinaire en caractéristique p.

In this paper we describe how to perform computations with Witt vectors of length 3 in an efficient way and give a formula that allows us to compute the third coordinate of the Greenberg transform of a polynomial directly. We apply these results to obtain information on the third coordinate of the j-invariant of the canonical lifting as a function on the j-invariant of the ordinary elliptic curve in characteristic p.

Reçu le :
Révisé le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.770
Classification : 11G20,  11Y16
Mots clés : Witt vectors, elliptic curves, canonical lifting, pseudo-canonical lifting, modular polynomial
@article{JTNB_2011__23_2_417_0,
     author = {Lu{\'\i}s R.~A. Finotti},
     title = {Computations with {Witt} vectors of length $3$},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {417--454},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {2},
     year = {2011},
     doi = {10.5802/jtnb.770},
     mrnumber = {2817938},
     zbl = {1269.13003},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.770/}
}
Luís R. A. Finotti. Computations with Witt vectors of length $3$. Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 2, pp. 417-454. doi : 10.5802/jtnb.770. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.770/

[1] R. Broker, K. Lauter, and A. V. Sutherland, Modular polynomials via isogeny volcanoes. Available at , 2010.

[2] K. Davis and W. Webb, A binomial coefficient congruence modulo prime powers. J. Number Theory 43(1) (1993), 20–23. | MR 1200804 | Zbl 0769.11008

[3] E. de Shalit, Kronecker’s polynomial, supersingular elliptic curves, and p-adic periods of modular curves. In p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), volume 165 of Contemp. Math., pages 135–148. Amer. Math. Soc., Providence, RI, 1994. | MR 1279607 | Zbl 0863.14015

[4] M. Deuring, Die typen der multiplikatorenringe elliptischer funktionenköper. Abh. Math. Sem. Univ. Hamburg 14 (1941), 197–272. | MR 5125

[5] N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pages 21–76. Amer. Math. Soc., Providence, RI, 1998. | MR 1486831 | Zbl 0915.11036

[6] L. R. A. Finotti, Degrees of the elliptic Teichmüller lift. J. Number Theory 95(2) (2002), 123–141. | MR 1924093 | Zbl 1043.11053

[7] L. R. A. Finotti, Minimal degree liftings of hyperelliptic curves. J. Math. Sci. Univ. Tokyo 11(1) (2004), 1–47. | MR 2044910 | Zbl 1116.11043

[8] L. R. A. Finotti, Minimal degree liftings in characteristic 2. J. Pure Appl. Algebra, 207(3):631–673, 2006. | MR 2265544 | Zbl 1139.11028

[9] L. R. A. Finotti, A formula for the supersingular polynomial. Acta Arith. 139(3) (2009), 265–273. | MR 2545930 | Zbl pre05615173

[10] L. R. A. Finotti, Lifting the j-invariant: Questions of Mazur and Tate. J. Number Theory 130(3) (2010), 620 – 638. | MR 2584845 | Zbl pre05678809

[11] M. J. Greenberg, Schemata over local rings. Ann. of Math. (2) 73 (1961), 624–648. | MR 126449 | Zbl 0115.39004

[12] N. Jacobson, Basic Algebra, volume 2. W. H. Freeman and Company, second edition, 1984. | Zbl 0557.16001

[13] M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series, and Atkin’s orthogonal polynomials. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pages 97–126. Amer. Math. Soc., Providence, RI, 1998. | MR 1486833 | Zbl 0955.11018

[14] S. Lang, On quasi algebraic closure. Ann. of Math. (2) 55 (1952), 373–390. | MR 46388 | Zbl 0046.26202

[15] S. Lang, Elliptic Functions. Volume 112 of Garduate Texts in Mathematics, Springer-Verlag, second edition, 1986. | MR 890960 | Zbl 0615.14018

[16] J. Lubin, J.-P. Serre, and J. Tate, Elliptic curves and formal groups. Proc. of Woods Hole summer institute in algebraic geometry, 1964. Unpublished. Available at .

[17] J.-P. Serre, Local Fields. Volume 67 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1979. | MR 554237 | Zbl 0423.12016

[18] J. H. Silverman, The Arithmetic of Elliptic Curves. Volume 106 of Graduate Texts in Mathematics, Springer-Verlag, 1985. | Zbl 1194.11005

[19] J. F. Voloch and J. L. Walker, Euclidean weights of codes from elliptic curves over rings. Trans. Amer. Math. Soc. 352(11) (2000), 5063–5076. | MR 1778505 | Zbl 0963.94047