Heights of roots of polynomials with odd coefficients
Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 369-381.

Let $\alpha$ be a zero of a polynomial of degree $n$ with odd coefficients, with $\alpha$ not a root of unity. We show that the height of $\alpha$ satisfies

 $h\left(\alpha \right)\ge \frac{0.4278}{n+1}.$

More generally, we obtain bounds when the coefficients are all congruent to $1$ modulo $m$ for some $m\ge 2$.

Soit $\alpha$ un zero d’un polynôme de degré $n$ à coefficients impairs qui n’est pas une racine de l’unité. Nous montrons que la hauteur de $\alpha$ satisfait

 $h\left(\alpha \right)\ge \frac{0.4278}{n+1}.$

Plus généralement, nous obtenons des bornes dans le cas où chaque coefficient est congru à $1$ modulo $m$, avec $m\ge 2$.

DOI: 10.5802/jtnb.721
Classification: 11R09, 11C08, 11R06
Keywords: Heights, Mahler measure, Lehmer’s problem
J. Garza 1; M. I. M. Ishak 1; M. J. Mossinghoff 2; C. G. Pinner 1; B. Wiles 1

1 Department of Mathematics Kansas State University Manhattan, KS 66506
2 Department of Mathematics Davidson College Davidson, NC 28035-6996
@article{JTNB_2010__22_2_369_0,
author = {J. Garza and M. I. M. Ishak and M. J. Mossinghoff and C. G. Pinner and B. Wiles},
title = {Heights of roots of polynomials with odd coefficients},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {369--381},
publisher = {Universit\'e Bordeaux 1},
volume = {22},
number = {2},
year = {2010},
doi = {10.5802/jtnb.721},
mrnumber = {2769068},
zbl = {1239.11113},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.721/}
}
TY  - JOUR
AU  - J. Garza
AU  - M. I. M. Ishak
AU  - M. J. Mossinghoff
AU  - C. G. Pinner
AU  - B. Wiles
TI  - Heights of roots of polynomials with odd coefficients
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2010
SP  - 369
EP  - 381
VL  - 22
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.721/
UR  - https://www.ams.org/mathscinet-getitem?mr=2769068
UR  - https://zbmath.org/?q=an%3A1239.11113
UR  - https://doi.org/10.5802/jtnb.721
DO  - 10.5802/jtnb.721
LA  - en
ID  - JTNB_2010__22_2_369_0
ER  - 
%0 Journal Article
%A J. Garza
%A M. I. M. Ishak
%A M. J. Mossinghoff
%A C. G. Pinner
%A B. Wiles
%T Heights of roots of polynomials with odd coefficients
%J Journal de théorie des nombres de Bordeaux
%D 2010
%P 369-381
%V 22
%N 2
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.721
%R 10.5802/jtnb.721
%G en
%F JTNB_2010__22_2_369_0
J. Garza; M. I. M. Ishak; M. J. Mossinghoff; C. G. Pinner; B. Wiles. Heights of roots of polynomials with odd coefficients. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 369-381. doi : 10.5802/jtnb.721. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.721/

[1] P. Borwein, E. Dobrowolski, and M. J. Mossinghoff, Lehmer’s problem for polynomials with odd coefficients. Ann. of Math. (2) 166 (2007), no. 2, 347–366. | MR | Zbl

[2] A. Dubickas and M. J. Mossinghoff, Auxiliary polynomials for some problems regarding Mahler’s measure. Acta Arith. 119 (2005), no. 1, 65–79. | MR | Zbl

[3] M. I. M. Ishak, M. J. Mossinghoff, C. G. Pinner, and B. Wiles, Lower bounds for heights in cyclotomic extensions. J. Number Theory 130 (2010), no. 6, 1408–1424. | MR

[4] V. A. Lebesgue, Sur l’impossibilité, en nombres entiers, de l’équation ${x}^{m}={y}^{2}+1$. Nouv. Ann. Math. (1) 9 (1850), 178–181. | Numdam

[5] W. Ljunggren, Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre kubische Formen mit positiver Diskriminante. Acta Math. 75 (1943), 1–21. | MR

[6] T. Nagell, Des équations indéterminées ${x}^{2}+x+1={y}^{n}$ et ${x}^{2}+x+1=3{y}^{n}$. Norsk Matematisk Forening, Skr. Ser. I (1921), no. 2, 1–14.

Cited by Sources: