We prove a result on the existence of linear forms of a given Diophantine type.
Nous démontrons un résultat sur l’existence des formes linéaires de type Diophantien donné.
Oleg N. German 1; Nikolay G. Moshchevitin 1
@article{JTNB_2010__22_2_383_0, author = {Oleg N. German and Nikolay G. Moshchevitin}, title = {Linear forms of a given {Diophantine} type}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {383--396}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {2}, year = {2010}, doi = {10.5802/jtnb.722}, mrnumber = {2769069}, zbl = {1239.11077}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.722/} }
TY - JOUR AU - Oleg N. German AU - Nikolay G. Moshchevitin TI - Linear forms of a given Diophantine type JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 383 EP - 396 VL - 22 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.722/ DO - 10.5802/jtnb.722 LA - en ID - JTNB_2010__22_2_383_0 ER -
%0 Journal Article %A Oleg N. German %A Nikolay G. Moshchevitin %T Linear forms of a given Diophantine type %J Journal de théorie des nombres de Bordeaux %D 2010 %P 383-396 %V 22 %N 2 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.722/ %R 10.5802/jtnb.722 %G en %F JTNB_2010__22_2_383_0
Oleg N. German; Nikolay G. Moshchevitin. Linear forms of a given Diophantine type. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 383-396. doi : 10.5802/jtnb.722. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.722/
[1] R. K. Akhunzhanov, N. G. Moshchevitin, Vectors of given Diophantine type. Mathematical Notes 80:3 (2006), 318–328. | MR | Zbl
[2] V. Beresnevich, H. Dickinson, S. L. Velani, Sets of “exact logarithmic” order in the theory of Diophantine approximation. Math. Annalen 321 (2001), 253–273. | MR | Zbl
[3] Y. Bugeaud, Sets of exact approximation order by rational numbers. Math. Ann. 327 (2003), 171–190. | MR | Zbl
[4] Y. Bugeaud, Sets of exact approximation order by rational numbers II. Univ. Disrtib. Theory 3 (2008), 9–20. | MR
[5] T. W. Cusick, M. E. Flahive, The Markoff and Lagrange spectra. AMS, Providence, Math. surveys and monographs 30, 1989. | MR | Zbl
[6] O. N. German, Asymptotic directions for best approximations of an -dimensional linear form. (Russian) Mat. Zametki, 75:1 (2004), 55–70; translation in Math. Notes 75:1-2 (2004), 51–65. | MR | Zbl
[7] M. Hall Jr., On the sum and product of continued fractions. Ann. of Math. (2) 48 (1948), 966–993. | MR | Zbl
[8] V. Jarnik, Uber die simultanen diophantischen Approximationen. Math. Zeitschr. 33 (1931), 505–543. | MR
[9] V. Jarnik, Un Théorème d’existence pour Les Approximations Diophantiennes. L’Enseignement mathématique 25 (1969), 171–175. | MR | Zbl
[10] N. G. Moshchevitin, On simultaneous Diophantine approximations. Vectors of given Diophantine type. Mathematical Notes 61:5 (1997), 590–599. | MR | Zbl
Cited by Sources: