Linear forms of a given Diophantine type
Journal de Théorie des Nombres de Bordeaux, Tome 22 (2010) no. 2, pp. 383-396.

Nous démontrons un résultat sur l’existence des formes linéaires de type Diophantien donné.

We prove a result on the existence of linear forms of a given Diophantine type.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.722
@article{JTNB_2010__22_2_383_0,
     author = {Oleg N. German and Nikolay G. Moshchevitin},
     title = {Linear forms of a given {Diophantine} type},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {383--396},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {2},
     year = {2010},
     doi = {10.5802/jtnb.722},
     mrnumber = {2769069},
     zbl = {1239.11077},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.722/}
}
TY  - JOUR
AU  - Oleg N. German
AU  - Nikolay G. Moshchevitin
TI  - Linear forms of a given Diophantine type
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2010
DA  - 2010///
SP  - 383
EP  - 396
VL  - 22
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.722/
UR  - https://www.ams.org/mathscinet-getitem?mr=2769069
UR  - https://zbmath.org/?q=an%3A1239.11077
UR  - https://doi.org/10.5802/jtnb.722
DO  - 10.5802/jtnb.722
LA  - en
ID  - JTNB_2010__22_2_383_0
ER  - 
Oleg N. German; Nikolay G. Moshchevitin. Linear forms of a given Diophantine type. Journal de Théorie des Nombres de Bordeaux, Tome 22 (2010) no. 2, pp. 383-396. doi : 10.5802/jtnb.722. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.722/

[1] R. K. Akhunzhanov, N. G. Moshchevitin, Vectors of given Diophantine type. Mathematical Notes 80:3 (2006), 318–328. | MR 2278876 | Zbl 1156.11325

[2] V. Beresnevich, H. Dickinson, S. L. Velani, Sets of “exact logarithmic” order in the theory of Diophantine approximation. Math. Annalen 321 (2001), 253–273. | MR 1866488 | Zbl 1006.11039

[3] Y. Bugeaud, Sets of exact approximation order by rational numbers. Math. Ann. 327 (2003), 171–190. | MR 2006007 | Zbl 1044.11059

[4] Y. Bugeaud, Sets of exact approximation order by rational numbers II. Univ. Disrtib. Theory 3 (2008), 9–20. | MR 2439605 | Zbl pre05593670

[5] T. W. Cusick, M. E. Flahive, The Markoff and Lagrange spectra. AMS, Providence, Math. surveys and monographs 30, 1989. | MR 1010419 | Zbl 0685.10023

[6] O. N. German, Asymptotic directions for best approximations of an n-dimensional linear form. (Russian) Mat. Zametki, 75:1 (2004), 55–70; translation in Math. Notes 75:1-2 (2004), 51–65. | MR 2053149 | Zbl 1111.11036

[7] M. Hall Jr., On the sum and product of continued fractions. Ann. of Math. (2) 48 (1948), 966–993. | MR 22568 | Zbl 0030.02201

[8] V. Jarnik, Uber die simultanen diophantischen Approximationen. Math. Zeitschr. 33 (1931), 505–543. | MR 1545226

[9] V. Jarnik, Un Théorème d’existence pour Les Approximations Diophantiennes. L’Enseignement mathématique 25 (1969), 171–175. | MR 248088 | Zbl 0177.07201

[10] N. G. Moshchevitin, On simultaneous Diophantine approximations. Vectors of given Diophantine type. Mathematical Notes 61:5 (1997), 590–599. | MR 1620125 | Zbl 0916.11040

Cité par Sources :