Let denote the class number of -th layer of the cyclotomic -extension of . Weber proved that is odd and Horie proved that is not divisible by a prime number satisfying . In a previous paper, the authors showed that is not divisible by a prime number less than . In this paper, by investigating properties of a special unit more precisely, we show that is not divisible by a prime number less than . Our argument also leads to the conclusion that is not divisible by a prime number satisfying .
Soit le nombres de classes du -ième étage de la -extension cyclotomique de . Weber a prouvé que est impair et Horie a prouvé que n’est divisible par aucun nombre premier satisfaisant . Dans un article précédent, les auteurs ont montré n’est divisible par aucun nombre premier inférieur à . Dans le présent article, en étudiant plus précisément les propriétés d’une unité particulière, nous montrons que n’est divisible par aucun nombre premier inférieur à . Notre argument conduit aussi à la conclusion que n’est divisible par aucun nombre premier satisfaisant .
@article{JTNB_2010__22_2_359_0, author = {Takashi Fukuda and Keiichi Komatsu}, title = {Weber{\textquoteright}s class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, {II}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {359--368}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {2}, year = {2010}, doi = {10.5802/jtnb.720}, mrnumber = {2769067}, zbl = {1223.11133}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.720/} }
TY - JOUR AU - Takashi Fukuda AU - Keiichi Komatsu TI - Weber’s class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, II JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 359 EP - 368 VL - 22 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.720/ DO - 10.5802/jtnb.720 LA - en ID - JTNB_2010__22_2_359_0 ER -
%0 Journal Article %A Takashi Fukuda %A Keiichi Komatsu %T Weber’s class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, II %J Journal de théorie des nombres de Bordeaux %D 2010 %P 359-368 %V 22 %N 2 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.720/ %R 10.5802/jtnb.720 %G en %F JTNB_2010__22_2_359_0
Takashi Fukuda; Keiichi Komatsu. Weber’s class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, II. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 359-368. doi : 10.5802/jtnb.720. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.720/
[1] H. Bauer, Numeriche Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper. J. Number Theory 1 (1969), 161–162. | MR | Zbl
[2] H. Cohn, A numerical study of Weber’s real class number calculation I. Numer. Math. 2 (1960), 347–362. | MR | Zbl
[3] T. Fukuda and K. Komatsu, Weber’s class number problem in the cyclotomic -extension of . Experimental Math. 18 (2009), 213–222. | MR | Zbl
[4] K. Horie, Ideal class groups of Iwasawa-theoritical abelian extensions over the rational field. J. London Math. Soc. 66 (2002), 257–275. | MR | Zbl
[5] K. Horie, The ideal class group of the basic -extension over an imaginary quadratic field. Tohoku Math. J. 57 (2005), 375–394. | MR | Zbl
[6] K. Horie, Triviality in ideal class groups of Iwasawa-theoretical abelian number fields. J. Math. Soc. Japan 57 (2005), 827–857. | MR | Zbl
[7] K. Horie, Primary components of the ideal class groups of Iwasawa-theoretical abelian number field. J. Math. Soc. Japan 59 (2007), 811–824. | MR | Zbl
[8] K. Horie, Certain primary components of the ideal class group of the -extension over the rationals. Tohoku Math. J. 59 (2007), 259–291. | MR
[9] K. Horie and M. Horie, The ideal class group of the -extension over the rationals. Tohoku Math. J., 61 (2009), 551–570. | MR
[10] J. M. Masley, Class numbers of real cyclic number fields with small conductor. Compositio Math. 37 (1978), 297–319. | EuDML | Numdam | MR | Zbl
[11] F. J. van der Linden, Class Number Computations of Real Abelian Number Fields. Math. Comp. 39 (1982), 693–707. | MR | Zbl
[12] L. C. Washington, Class numbers and -extensions. Math. Ann. 214 (1975), 177–193. | EuDML | MR | Zbl
[13] L. C. Washington, The non--part of the class number in a cyclotomic -extension. Inv. Math. 49 (1978), 87–97. | EuDML | MR | Zbl
[14] H. Weber, Theorie der Abel’schen Zahlkörper. Acta Math. 8 (1886), 193–263. | JFM | MR
Cited by Sources: