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Heights of roots of polynomials with odd
coefficients

par J. GARZA, M. I. M. ISHAK, M. J. MOSSINGHOFF,
C. G. PINNER et B. WILES

Résumé. Soit α un zero d’un polynôme de degré n à coefficients
impairs qui n’est pas une racine de l’unité. Nous montrons que la
hauteur de α satisfait

h(α) ≥ 0.4278
n+ 1

.

Plus généralement, nous obtenons des bornes dans le cas où chaque
coefficient est congru à 1 modulo m, avec m ≥ 2.

Abstract. Let α be a zero of a polynomial of degree n with odd
coefficients, with α not a root of unity. We show that the height
of α satisfies

h(α) ≥ 0.4278
n+ 1

.

More generally, we obtain bounds when the coefficients are all
congruent to 1 modulo m for some m ≥ 2.

1. Introduction
We recall the Mahler measure M(f) of a polynomial f = a

∏d
i=1(x−αi)

in C[x]:

M(f) = |a|
d∏
i=1

max{1, |αi|}.

For a nonzero algebraic number α of degree d, one defines the absolute
logarithmic height h(α) of α to be

h(α) = 1
d

logM(F ),

where F is an irreducible polynomial in Z[x] with F (α) = 0. That is,
logM(f) represents the sum of the heights of the nonzero roots of f (with
multiplicity) whenever f is primitive in Z[x].
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For an integerm ≥ 2, let Dm denote the set of integer polynomials whose
coefficients ai all satisfy ai ≡ 1 (mod m). For a polynomial of degree n in
Dm with no cyclotomic factors, Borwein, Dobrowolski, and Mossinghoff [1]
proved that

logM(f) ≥ cm
n

n+ 1
,

with c2 = 1
4 log 5 = 0.402359 . . . , c3 = 0.459003, and cm = log(

√
m2 + 1/2)

form > 3. These constants were improved in [2] to obtain c2 = 0.416230 . . . ,
general bounds of strength

cm =
{

log(m/2) + (3− log 3)/2m2 +O(1/m4) if m ≥ 3 odd,
log(m/2) + (4− log 4)/m2 +O(1/m4) if m ≥ 4 even,

and particular values c3 = 0.501026 . . . , c4 = 0.832461 . . . , c5 = 0.952869,
c6 = 1.165884, c7 = 1.271775, c8 = 1.425369, c9 = 1.515669, c10 =
1.634836, and c11 = 1.712539.

We show here how to more straightforwardly obtain bounds of the form

(1.1) h(α) ≥ cm
n+ 1

when α is a zero of a polynomial f in Dm of degree n, but not a 2(n+ 1)st
root of unity. Of course then

logM(f) ≥ cm
d

n+ 1
where d is the degree of the noncyclotomic part of f (the type of bound
obtained in Theorem 2.2 of [2]).

Theorem 1.1. If α is a zero of a polynomial f in Dm of degree n and α is
not a 2(n+ 1)st root of unity (not an (n+ 1)st if m ≥ 3), then (1.1) holds
with

c2 = 0.427800

and

cm = log
(
m

2

)
+ 2.947486− δ/2

m2 +O
( 1
m4

)
,

where

δ =
{

1 if m ≥ 3 odd,
0 if m ≥ 4 even.

For small m ≥ 3 we show the following improvements: c3 = 0.620362,
c4 = 0.855600, c5 = 1.016628, c6 = 1.179916, c7 = 1.307083, c8 = 1.434141,
c9 = 1.538934, c10 = 1.640027, and c11 = 1.728890.
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We note the easily obtained (if asymptotically less precise) bound

(1.2) cm =


1
2 log

(
m2+3

4

)
if m ≥ 3 odd,

1
2 log

(
m2+4

4

)
if m ≥ 4 even

(the even case having already been obtained and improved in [2]). We
remark also that the same computation that yields the value of c3 in The-
orem 1.1 immediately produces the lower bound

h(α) ≥ 0.155090

for abelian α (see [3]).
Our second main result shows that the optimal cm in (1.1) certainly

satisfies cm = logm+O(1).

Theorem 1.2. If (1.1) holds for any non-root of unity α that is a zero of
a polynomial f in Dm of degree n, then

(1.3) c2 ≤ log
(

1 +
√

5
2

)
= 0.481211 . . .

(even if we further restrict to Littlewood polynomials),

(1.4) c3 ≤ log 2 = 0.693147 . . . ,

(1.5) c4 ≤ log(1 +
√

2) = 0.881373 . . . ,

and

(1.6) c6 ≤ log
(

3 +
√

13
2

)
= 1.194763 . . . .

Further, for general m ≥ 3,

(1.7) cm ≤ log(m− 1).

It is not clear what the optimal constant C1 should be in a bound of the
form cm = logm− C1 + o(1).

2. Preliminaries
Suppose that α lies in an algebraic number field k, and Vk is a complete

set of absolute values | |v on k, normalised so that |x|v = ‖x‖dv/dv where
d = [k : Q], dv = [kv : Qv], and ‖x‖v coincides with the usual absolute value
or p-adic absolute value on Q. Then

h(α) = logH(α), H(α) =
∏
v∈Vk

max{1, |α|v}.

The normalisations ensure that this does not depend upon k.
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Lemma 2.1. For t = 1, or t > 1 and k ≤ 4t/(t− 1)2,

sup
|z|=1
|(z − 1)k(z + t)| = (t+ 1)k+1

(k + 1)
1
2 (k+1)

(
k

t

) 1
2k

,

achieved at z = − ((t2+1)k−2t)
2t(k+1) ± (t+1)

√
k(4t−(t−1)2k)

2t(k+1) i. For t > 1 and k ≥
4t/(t− 1)2, the supremum is 2k(t− 1), achieved at z = −1.

Proof. Writing z = eiθ, u = cos θ, it is readily checked that

|(z − 1)k(z + t)|2 = 2k(1− u)k((t2 + 1) + 2tu)

is maximised for −1 ≤ u ≤ 1 at u = − ((t2+1)k−2t)
2t(k+1) while this is at least −1

(and at u = −1 when k > 4t/(t− 1)2). �

Define the polynomials

(2.1) g1(z) = 1
2

(m− δ)z + 1
2

(m+ δ), δ =
{

1 if m is odd,
0 if m is even,

and

(2.2) g2(z) = 1
4

(m2 + (4− δ))z2 + 1
2

(m2 − (4− δ))z + 1
4

(m2 + (4− δ)).

Lemma 2.2. If m ≥ 3 is odd then g1(zn) is irreducible in Z[z] for all n in
N. Further, if m ≥ 4 is odd with 3 - m or even with 4 | m then g2(zn) is
irreducible in Z[z] for all n in N.

Proof. Ifm = 2k+1, is odd then by Capelli’s Theorem g1(zn) = kzn+(k+1)
is irreducible unless (k+1)/k is a prime power in Q, but plainly k+1 = ap,
k = bp has no positive integer solutions a, b.

Observe that if g2(β) = 0 then

β =
−1

2(m2 − (4− δ))±m
√

(4− δ)i
1
2(m2 + (4− δ))

is complex, lying on the unit circle. Moreover, if m is odd and 3 - m, or if
4 | m, then

gcd
(1

4
(m2 + (4− δ)), 1

2
(m2 − (4− δ))

)
= 1,

g2(z) is irreducible in Z[z], and

h(β) = 1
2

log
(
m2 + (4− δ)

4

)
.
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Notice that if m ≥ 2 is odd with 3 | m, or if 2 ‖m, then we need to first
factor out a common 3 or 2 and

(2.3) h(β) = 1
2

log
(
m2 + 3

12

)
or 1

2
log

(
m2 + 4

8

)
.

Suppose then that (m, 6) = 1 or 4 | m, and g2(zn) has a nontrivial factor,

r(z) =
d∑
i=0
aiz
i ∈ Z[z], ad 6= 0, 0 < d < 2n.

If α is a root of r(z), then
log |ad|
d

= h(α) = 1
n
h(β)

and
m2 + (4− δ)

4
= |ad|2n/d = yp

for some y in N and prime p | 2n/ gcd(2n, d). For m = 4l, this reduces to
l2 + 1 = yp, a special case of Catalan’s equation shown to have no solution
by Lebesgue [4]. For odd m = 2l+ 1, this reduces to l2 + l+ 1 = yp, which
was shown by Nagell [6] and Ljunggren [5] to have only the solution p = 3,
y = 7, l = 18. This just leaves the case m = 37, in which case

g2(zn) = 73 (zn − β)
(
zn − β−1

)
, β = 1

2

(
1−
√

3i
)(2 +

√
3i

2−
√

3i

)3

.

Plainly then g2(zn) is irreducible in Z[z] unless (zn − β) is reducible in
Q(
√

3i)[z]. But by Capelli’s Theorem this would require β = Ap or − 4µ4

for some prime p and A or µ in Q(
√

3i). Considering prime factorizations in
the integers of Q(

√
3i), the only possibility would be p = 3, but 1

2(1−
√

3i)
cannot be a cube in Q(

√
3i) (which contains the sixth but not the eighteenth

roots of unity). �

3. Proof of Theorem 1.1
If f is in Dm, then f(x) = xn+1−1

x−1 +mr(x) for some r of degree at most
n in Z[x]. Hence for v -∞, writing β = αn+1,

(3.1) |β − 1|v = |m(α− 1)r(α)|v ≤ |m|vmax{1, |β|v}.

For m = 2 we take

g(z) =(z − 1)k(z + 1)l(5z2 + 6z + 5)t(29z4 + 60z3 + 78z2 + 60z + 29)w

· (3z2 + 2z + 3)c(33z4 + 60z3 + 70z2 + 60z + 33)e

· (169z6 + 490z5 + 871z4 + 1036z3 + 871z2 + 490z + 169)s.
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Thus for v -∞,

|β − 1|v ≤ |2|vmax{1, |β|v},
|β + 1|v = |β − 1 + 2|v ≤ |2|vmax{1, |β|v},

and

(3.2)
∣∣∣β2 − 1

∣∣∣
v
≤ |2|2vmax{1, |β|v}2,

giving

|β2 + 1|v = |β2 − 1 + 2|v ≤ |2|vmax{1, |β|v}2,∣∣∣5β4 + 6β2 + 5
∣∣∣
v

=
∣∣∣5(β2 − 1)2 + 16β2

∣∣∣
v
≤ |2|4vmax{1, |β|v}4,∣∣∣3β4 + 2β2 + 3

∣∣∣
v

=
∣∣∣3(β2 − 1)2 + 8β2

∣∣∣
v
≤ |2|3vmax{1, |β|v}4,

and for integers A, B, C, and D,

(3.3)
∣∣∣A(β2 − 1)4 +B24β2(β2 − 1)2 + C28β4

∣∣∣
v
≤ |2|8vmax{1, |β|v}8,

and

(3.4)
∣∣∣A(β2 − 1)6 +B42β2(β2 − 1)4 + C44β4(β2 − 1)2 +D46β6

∣∣∣
v

≤ |2|12
v max{1, |β|v}12.

The two quartic factors in g(z) correspond to (A,B,C) = (29, 11, 1) and
(33, 12, 1) in (3.3), and the sextic to (A,B,C,D) = (169, 94, 17, 1) in (3.4).
Hence we have

|g(β2)|v ≤ |2|2k+l+4t+8w+3c+8e+12s
v max{1, |β|v}2 deg g

for v -∞.
For v | ∞ and |β|v > 1, we observe that |g(β2)|v = |β|2 deg g

v |g(β−2)|v
with |β−2|v < 1. Hence for v | ∞,

|g(β2)|v ≤ max{1, |β|v}2 deg g
(

sup
|z|≤1
|g(z)|

)dv/d
= max{1, |β|v}2 deg g√M

dv/d
,

where, writing z = eit and u = cos t,

M = sup
|z|=1
|g(z)|2 = 2k+l+2t+4w+2c+4e+6sL,

with

L = sup
−1≤u≤1

(1− u)k(1 + u)l(5u+ 3)2t(29u2 + 30u+ 5)2w(3u+ 1)2c

· (33u2 + 30u+ 1)2e(169u3 + 245u2 + 91u+ 7)2s.



Heights of roots of polynomials with odd coefficients 375

We need to justify that g(β2) 6= 0. By assumption β2 6= 1, and from (3.2)
plainly β2 6= −1. Observe also that

5z4(n+1) + 6z2(n+1) + 5,

3z4(n+1) + 2z2(n+1) + 3,

29z8(n+1) + 60z6(n+1) + 78z4(n+1) + 60z2(n+1) + 29,

33z8(n+1) + 60z6(n+1) + 70z4(n+1) + 60z2(n+1) + 33,

and the factors

13z6(n+1) + 2z5(n+1) + 19z4(n+1) − 4z3(n+1) + 19z2(n+1) + 2z(n+1) + 13,

13z6(n+1) − 2z5(n+1) + 19z4(n+1) + 4z3(n+1) + 19z2(n+1) − 2z(n+1) + 13

of
169z12(n+1) + 490z10(n+1) + 871z8(n+1) + 1036z6(n+1) + 871z4(n+1)

+ 490z2(n+1) + 169

are all irreducible (each of their roots lies on the unit circle with the same
nontrivial height, so the lead coefficients of each factor would need to con-
tain all the primes in the original lead coefficient). Since α has degree at
most n, the remaining factors cannot vanish. Thus, by the product formula,

1 =
∏
v

|g(β2)|v ≤ H(β)2 deg g2−(2k+l+4t+8w+3c+8e+12s)√M,

and

(3.5) h(β) ≥
log

(
23k+l+6t+12w+4c+12e+18s/L

)
4(k + l + 2t+ 4w + 2c+ 4e+ 6s)

.

The choice (k, l, t, w, c, e, s) = (3977, 780, 328, 96, 24, 16, 16) and numerical
computation of L gives the lower bound h(β) ≥ 0.4278003111 . . . claimed.

For m = 4, taking g(β) in place of g(β2) immediately produces h(β) ≥
2 · 0.4278003111 . . . = 0.8556006223 . . . .

For general m ≥ 3, we take

g(z) =
I∏
i=0
gi(z)si

with I = 2, g0(z) = z − 1, and g1(z) and g2(z) as in (2.1) and (2.2). For
v -∞ we have

|g1(β)|v =
∣∣∣∣12(m− δ)(β − 1) +m

∣∣∣∣
v
≤ |m|vmax{1, |β|v},

|g2(β)|v =
∣∣∣∣14(m2 + (4− δ))(β − 1)2 +m2β

∣∣∣∣
v
≤ |m|2vmax{1, |β|v}2,
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and
|g(β)|v ≤ max{1, |β|v}deg g|m|deg g

v .

For v | ∞ and |β|v > 1, writing |g(β)|v = |β|deg g
v |g∗(β−1)|v, where g∗ is the

reciprocal of g, we have

|g(β)|v ≤ max{1, |β|v}deg g
(

sup
|z|≤1

max{|g(z)|, |g∗(z)|}
)dv/d

= max{1, |β|v}deg g sup
|z|=1
|g(z)|dv/d.

Hence assuming that g(β) 6= 0 we have

1 =
∏
v

|g(β)|v ≤ H(β)deg gm− deg g sup
|z|=1
|g(z)|,

and

(3.6) h(β) ≥ log(m)− log(
√
M)

deg g
, M := sup

|z|=1
|g(z)|2.

It remains to check that g(β) 6= 0. By assumption β 6= 1. For m odd
g1(zn+1) is irreducible by Lemma 2.2 so cannot vanish at α (which has
degree at most n). From (3.1) we know that

(3.7)
∏
v|∞
|1− β|v ≥ m

∏
v-∞

max{1, |β|v}−1.

So for m > 2 we must have β 6= −1 (else (3.7) gives 2 ≥ m). Hence
g0(β)g1(β) 6= 0. Thus when s2 = 0 and s1 = 1 (and s0 ≤ m2 − 1 when m is
odd), Lemma 2.1 gives

√
M = ms0+1

(s0 + 1)
1
2 (s0+1)

( 4s0
m2 − δ

) 1
2 s0

,

and

H(β)s0+1 ≥ (s0 + 1)
1
2 (s0+1)

(
m2 − δ

4s0

) 1
2 s0

.

The result (1.2)

(3.8) h(β) ≥ 1
2

log
(
m2 + 4− δ

4

)
follows from optimally taking s0 = (m2 − δ)/4.

Similarly, degree considerations show that g2(β) 6= 0 when 4 | m, or when
m is odd with 3 - m, and g2(zn+1) is irreducible by Lemma 2.2. When m
is odd and 3 | m, or when 2 ‖m, then g2(β) 6= 0 from (2.3) and the lower
bound (3.8).
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Converting to cosines, we have

M = sup
|z|=1
|g(z)|2 = sup

u∈[−1,1]

I∏
i=0
fi(u)si ,

with

f0(u) = 2(1− u),

f1(u) = 1
2

(m2 − δ)u+ 1
2

(m2 + δ),

and

f2(u) =
(1

2

(
m2 + (4− δ)

)
u+ 1

2

(
m2 − (4− δ)

))2
,

where plainly M will be achieved at u = −1 or at zero of
I∑
i=0
si
f ′i(u)
fi(u)

= 0.

For example, after numerical computational and experimentation,
the respective choices (m; s0, s1, s2) = (3; 107, 48, 17), (5; 198, 26, 13),
(6; 246, 21, 11), (7; 225, 14, 8), (8; 151, 7, 4), (9; 326, 12, 7), (10; 106, 3, 2), and
(11; 206, 5, 3) produce in turn c3 = 0.599206, c5 = 1.001086, c6 = 1.172140,
c7 = 1.298988, c8 = 1.429512, c9 = 1.532875, c10 = 1.637694, and c11 =
1.724309.

For the asymptotic bound, we take a sequence of triples (s0, s1, s2) with

s0/s2 → Am2, s1/s2 → 2C,

for constants A and C which will be chosen optimally below. Hence M
must be achieved at

u = −Am
6 +m2((4− δ)(2C −Aδ)− 2δ)− 2δ(4− δ)(C + 1)± 2m2√D1

(m2 − δ)(m2 + 4− δ)(Am2 + 2C + 2)
,

where

D1 = m4
(
(2A+ 1 + C)2 − 8AC

)
+m2 ((2A+ 1 + C)(8− 2δ(C + 1)) + 8ACδ)

+ (4− δ(1 + C))2 ,

or at u = −1 when m is odd. Writing

u = −1 + 2
Am2

(
2A+ 1 + C −Aδ ±

√
D
)

+O
( 1
m4

)
,
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where D = (2A+ 1 + C)2 − 8AC, leads to

cm ≥ log
(
m

2

)
+ 1

2Am2 min
±

log

 exp
(
2A+ 1 + C −Aδ ±

√
D
)

(
2A+1+C±

√
D

4A

)2C (−2A+1+C±
√
D

4A

)2


+O

( 1
m4

)
,

or log(m/2) + 1
Am2 log

(
22(1+C)/3

)
+O

(
m−4

)
if this is smaller when m is

odd. For a given choice of C we can choose A to make these ± quantities
equal. Choosing (after numerical experimentation) 2C = 1.5799148239 and
calculating A = 0.5569260220 . . . gives the desired asymptotic bound.

To obtain the improved values for m = 3 to 11 stated in the theorem,
we take g(z) =

∏I
i=0 gi(z)si with I = 4 or 5, where the auxiliary factors

gi(z) and choice of exponents si are given in Table 3.1. For these gj(z)
we have |gj(β)|v ≤ |m|

deg gj
v max{1, |β|v}deg gj for v - ∞ and (3.6) holds as

before (as long as g(β) 6= 0). We can argue as above that g(β) 6= 0 by
irreducibility (and for m = 8 that 1

2 log 9 = 1.0986 . . . < 1.4295 . . . , the
previous lower bound, and for m = 5 and m = 11 that 1

2 log 8 > 1.016628
and 1

2 log 32 > 1.728890). �
We remark that many factors of the auxiliary polynomials employed in

the proof were selected by using a number of experimental strategies, in-
cluding testing various combinations of factors of the form (3.3) or (3.4),
since the polynomials in these families produce sizable arithmetic contribu-
tions to the bound (3.5) relative to their degree. Algorithm 2.3 of [2] was
also used to construct some of the factors. For example, the polynomial
g3(z) shown for m = 3 in Table 3.1 was found by applying that algorithm
to the base polynomial (x− 1)6(x+ 2)3(x2 +x+ 1). In addition, the values
of the exponents si used here were selected by using heuristic optimization
strategies like hill-climbing.

We remark also that additional factors could probably be added to the
auxiliary polynomials g(z) employed here in the style of [2] for further
improvements.

Finally, the choices g(z) = (z2 − 1)4(z2 + 1) and g(z) = (z − 1)m2(z + 1)
similarly recover the values c2 = 1

4 log 5 and cm = log(
√
m2 + 1/2) for

m > 2 respectively (and using the auxiliary polynomials of [2] for g(z)
gives the improved values stated there).

4. Proof of Theorem 1.2
Since the golden ratio is a limit point of Salem numbers with Littlewood

minimal polynomials (Theorem 6.2 of [1]) we note that the optimal c2
certainly satisfies (1.3).
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Table 3.1. Auxiliary factors and exponents.

m Auxiliary factors g3(z), . . . (s0, s1, s2, s3, . . .)

3 g3(z) = 11(z − 1)4 + 7 · 32z(z − 1)2 + 34z2 (823, 178, 183, 48, 53, 7)
g4(z) = 13(z − 1)4 + 8 · 32z(z − 1)2 + 34z2

g5(z) = 5(z − 1)2 + 2 · 32z

5 g3(z) = 8(z − 1)2 + 52z (340, 10, 29, 1, 8, 10)
g4(z) = 61(z − 1)4 + 16 · 52z(z − 1)2 + 54z2

g5(z) = 5(11(z − 1)4 + 3 · 52z(z − 1)2 + 53z2)

6 g3(z) = 109(z − 1)4 + 21 · 62z(z − 1)2 + 64z2 (222680, 19000, 8000,
g4(z) = 11(z − 1)2 + 62z 2793, 2064, 1000)
g5(z) = 2(59(z − 1)4 + 11 · 62z(z − 1)2 + 3 · 63z2)

7 g3(z) = 181(z − 1)4 + 27 · 72z(z − 1)2 + 74z2 (309, 16, 9, 4, 1, 2)
g4(z) = 193(z − 1)4 + 28 · 72z(z − 1)2 + 74z2

g5(z) = 7(2z2 + 3z + 2)

8 g3(z) = 2(9(z − 1)2 + 25z) (944, 45, 20, 5, 5, 2)
g4(z) = 305(z − 1)4 + 35 · 82z(z − 1)2 + 84z2

g5(z) = 321(z − 1)4 + 36 · 82z(z − 1)2 + 84z2

9 g3(z) = 461(z − 1)4 + 43 · 92z(z − 1)2 + 94z2 (44277, 0, 1256, 538, 273)
g4(z) = 481(z − 1)4 + 44 · 92z(z − 1)2 + 94z2

10 g3(z) = 701(z − 1)4 + 53 · 102z(z − 1)2 + 104z2 (1029, 25, 10, 5, 3)
g4(z) = 1351(z − 1)4 + 104 · 102z(z − 1)2 + 2 · 104z2

11 g3(z) = 32(z − 1)2 + 112z (827, 6, 12, 2, 6, 3)
g4(z) = 991(z − 1)4 + 63 · 112z(z − 1)2 + 114z2

g5(z) = 1021(z − 1)4 + 64 · 112z(z − 1)2 + 114z2

Suppose that m ≥ 3. For (1.4) and (1.7) we take n ≥ 2 and

fn(x) = x2n +
n−1∑
i=0

(
x2i − (m− 1)x2i+1

)
= xn+1

x2 − 1
Fn(x),

with
Fn(x) = (xn+1 − x−(n+1))− (m− 1)(xn − x−n).

Since fn
(

1
m−1

)
> 0 and fn

(
1
m−1

(
1 +

(
2
m−1

)n))
< 0, it is clear that

the fn(x) have real roots αn and α−1
n with αn → (m − 1) as n → ∞.

Notice that fn(x) does not vanish at ±1 or any (2n + 1)st root of unity
(so by the theorem can have no cyclotomic factors). Since 1

2iF (e2πit) =
sin(2π(n+ 1)t)− (m− 1) sin(2πnt) changes sign, it must have a zero tj in
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each interval
[

2j−1
4n ,

2j+1
4n

]
, j = 1, 2, . . . , 2n− 1, and the remaining (2n− 2)

zeros e2πitj , tj 6= 1/2 of fn(x) all lie on the unit circle. Since fn(x) has no
monic factors with all roots on the unit circle, these fn(x) are irreducible
with (deg fn + 1)h(αn) =

(
2n+1

2n

)
logαn → log(m− 1) as n→∞.

For (1.5) we similarly consider

fn,4(x) =
4n+2∑
i=0
xi − 4x

n∑
i=0
x4i = (1− x)(1− 2x− x2)

n∑
i=0
x4i − x4n+3

with real roots αn, α−1
n →

√
2 − 1,

√
2 + 1 and no roots at the (4n + 3)rd

roots of unity. Writing Fn,4(x) = (x4 − 1)fn,4(x)x−(2n+3), and observing
that

1
4i
Fn,4(e2πit) = (cos(3πt) + cos(πt)) sin((4n+ 3)πt)− 2 sin(4(n+ 1)πt)

has sign changes in each of the intervals [(2j+1)/8(n+1), (2j+3)/8(n+1)],
j = 0, . . . , 4n+ 2 (and removing the introduced fourth roots of unity), the
remaining 4n zeros of fn,4(x) all lie on the unit circle.

For (1.6) we take

fn,6(x) =
6n+4∑
i=0
xi − 6x(1− x+ x2)

n∑
i=0
x6i

= (1− x)(1− x+ x2)(1− 3x− x2)
n∑
i=0
x6i − x6n+5

with real roots αn, α−1
n → 1

2(
√

13 − 3), 1
2(
√

13 + 3) and no roots at the
(6n + 5)th roots of unity. Writing Fn,6(x) = (x6−1)

(x2−x+1)fn,6(x)x−(3n+4) and
observing that

1
4i
Fn,6(e2πit) = (cos(3πt) + 2 cos(πt)) sin((6n+ 5)πt)− 3 sin(6(n+ 1)πt)

has sign changes in each of the intervals [(2j+1)/12(n+1), (2j+3)/12(n+
1)], j = 0, . . . , 6n + 4 (and removing the introduced sixth roots of unity),
the remaining 6n+ 2 zeros of fn,6(x) all lie on the unit circle. �
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