Let be a finite-volume quotient of the upper-half space, where is a discrete subgroup. To a finite dimensional unitary representation of one associates the Selberg zeta function . In this paper we prove the Artin formalism for the Selberg zeta function. Namely, if is a finite index group extension of in , and is the induced representation, then . In the second part of the paper we prove by a direct method the analogous identity for the scattering function, namely , for an appropriate normalization of the Eisenstein series.
Soit un sous-groupe discret de tel que le quotient ait un volume fini. On associe à une représentation unitaire de dimension finie de la fonction zêta de Selberg . Dans cet article, on prouve le formalisme d’Artin pour cette fonction zêta de Selberg. Plus précisément, si est une extension de d’indice fini dans , et si est la représentation induite, alors . Dans la deuxième partie de l’article, on prouve par une méthode directe l’identité analogue pour la fonction de dispersion. Plus précisément, pour une certaine normalisation de la série d’Eisenstein.
Eliot Brenner 1; Florin Spinu 2
@article{JTNB_2009__21_1_59_0, author = {Eliot Brenner and Florin Spinu}, title = {Artin formalism for {Selberg} zeta functions of co-finite {Kleinian} groups}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {59--75}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {1}, year = {2009}, doi = {10.5802/jtnb.657}, mrnumber = {2537703}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.657/} }
TY - JOUR AU - Eliot Brenner AU - Florin Spinu TI - Artin formalism for Selberg zeta functions of co-finite Kleinian groups JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 59 EP - 75 VL - 21 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.657/ DO - 10.5802/jtnb.657 LA - en ID - JTNB_2009__21_1_59_0 ER -
%0 Journal Article %A Eliot Brenner %A Florin Spinu %T Artin formalism for Selberg zeta functions of co-finite Kleinian groups %J Journal de théorie des nombres de Bordeaux %D 2009 %P 59-75 %V 21 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.657/ %R 10.5802/jtnb.657 %G en %F JTNB_2009__21_1_59_0
Eliot Brenner; Florin Spinu. Artin formalism for Selberg zeta functions of co-finite Kleinian groups. Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 1, pp. 59-75. doi : 10.5802/jtnb.657. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.657/
[1] E. Brenner, F. Spinu, Artin Formalism, for Kleinian Groups, via Heat Kernel Methods. Submitted to Serge Lang Memorial Volume.
[2] P. Cohen, P. Sarnak, Lecture notes on Selberg trace formula (unpublished).
[3] J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. | MR | Zbl
[4] J. Friedman, The Selberg trace formula and Selberg-zeta function for cofinite Kleinian groups with finite-dimensional unitary representations. Math. Zeit. 50 (2005), No.4. | MR | Zbl
[5] J. Friedman, Analogues of the Artin factorization formula for the automorphic scattering matrix and Selberg zeta-function associated to a Kleinian group. Arxiv:math/0702030. | MR
[6] R. Gangolli, G. Warner, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one. Nagoya Math. J. 78 (1980), 1–44. | MR
[7] J. Jorgenson, S. Lang, Artin formalism and heat kernels. Jour. Reine. Angew. Math. 447 (1994), 165–280. | MR | Zbl
[8] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47–87. | MR | Zbl
[9] A.B. Venkov, The Artin Takagi formula for Selberg’s zeta-function and the Roelcke conjecture. Soviet Math. Dokl. 20 (1979), No.4, 745–748. | Zbl
[10] A. B. Venkov, Spectral Theory of Automorphic Functions. Proceedings of the Steklov Institute of Mathematics 4, 1982. | MR | Zbl
[11] A. B. Venkov, P. Zograf, Analogues of Artin’s factorization in the spectral theory of automorphic functions. Math. USSR Izvestiya 2 (1983), No. 3, 435–443. | Zbl
Cited by Sources: