Problems and results on the distribution of algebraic points on algebraic varieties
Journal de Théorie des Nombres de Bordeaux, Volume 21 (2009) no. 1, pp. 41-57.

This is a survey paper on the distribution of algebraic points on algebraic varieties.

Cet article est un exposé de plusieurs résultats sur la distribution des points algébriques sur les variétés algébriques.

Published online:
DOI: 10.5802/jtnb.656
Enrico Bombieri 1

1 Institute for Advanced Study 1 Einstein Drive Princeton, NJ 08540, USA
@article{JTNB_2009__21_1_41_0,
     author = {Enrico Bombieri},
     title = {Problems and results on the distribution of algebraic points on algebraic varieties},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {41--57},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {1},
     year = {2009},
     doi = {10.5802/jtnb.656},
     zbl = {pre05620667},
     mrnumber = {2537702},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.656/}
}
TY  - JOUR
TI  - Problems and results on the distribution of algebraic points on algebraic varieties
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2009
DA  - 2009///
SP  - 41
EP  - 57
VL  - 21
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.656/
UR  - https://zbmath.org/?q=an%3Apre05620667
UR  - https://www.ams.org/mathscinet-getitem?mr=2537702
UR  - https://doi.org/10.5802/jtnb.656
DO  - 10.5802/jtnb.656
LA  - en
ID  - JTNB_2009__21_1_41_0
ER  - 
%0 Journal Article
%T Problems and results on the distribution of algebraic points on algebraic varieties
%J Journal de Théorie des Nombres de Bordeaux
%D 2009
%P 41-57
%V 21
%N 1
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.656
%R 10.5802/jtnb.656
%G en
%F JTNB_2009__21_1_41_0
Enrico Bombieri. Problems and results on the distribution of algebraic points on algebraic varieties. Journal de Théorie des Nombres de Bordeaux, Volume 21 (2009) no. 1, pp. 41-57. doi : 10.5802/jtnb.656. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.656/

[1] F. Amoroso, S. David, Le problème de Lehmer en dimension supérieure. J. reine angew. Math. 513 (1999), 145–179. | MR: 1713323 | Zbl: 1011.11045

[2] F. Amoroso, R. Dvornicich, A lower bound for the height in an abelian extension. J. Number Th. 80 (2000), 260–272. | MR: 1740514 | Zbl: 0973.11092

[3] V.V. Batyrev, Yu.I. Manin, Sur le nombre des points rationnels de hauteur bornée des variétés algébriques. Math. Annalen 286 (1980), 27–43. | MR: 1032922 | Zbl: 0679.14008

[4] Yu.F. Bilu, Limit distribution of small points on algebraic tori. Duke Math. J. 89 (1997), 465–476. | MR: 1470340 | Zbl: 0918.11035

[5] E. Bombieri, W. Gubler, Heights in Diophantine Geometry, Cambridge Univ. Press 2006, xvi+652pp. | MR: 2216774 | Zbl: 1115.11034

[6] E. Bombieri, H.P.F. Swinnerton-Dyer, On the local zeta function of a cubic threefold. Ann. Scuola Norm. Super. Pisa Sci. Fis. Mat. (3) 21 (1967), 1–29. | Numdam | MR: 212019 | Zbl: 0153.50501

[7] E. Bombieri, U. Zannier, A note on heights in infinite extensions of . Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 5–14. | MR: 1898444 | Zbl: 1072.11077

[8] C. Christensen, W. Gubler, Der relative Satz von Schanuel. Manuscripta Math. 126 (2008), 505–525. | MR: 2425438 | Zbl: 1155.11034

[9] H. Clemens, P.A. Griffiths, The intermediate Jacobian of the cubic threefold. Ann. of Math. (2) 95 (1972), 281–356. | MR: 302652 | Zbl: 0214.48302

[10] S. David, P. Philippon, Minorations des hauteurs normalisées des sous-variétés des tores. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 489–543. Errata: ibid. (4) 29 (2000), 729–731. | Numdam | MR: 1736526 | Zbl: 1002.11055

[11] R. de la Bretèche, Points rationnels sur la cubique de Segre. Proc. London Math. Soc. (3) 95 (2007), 69–155. | MR: 2329549 | Zbl: 1126.14025

[12] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial. Acta Arith. XXXIX (1979), 391–401. | MR: 543210 | Zbl: 0416.12001

[13] G. Faltings, Diophantine approximation on abelian varieties. Ann. of Math. (2) 133 (1991), 549–576. | MR: 1109353 | Zbl: 0734.14007

[14] K.B. Ford, New estimates for mean values of Weyl sums. Internat. Math. Res. Notices (1995), 155–171. | MR: 1321702 | Zbl: 0821.11050

[15] J. Franke, Yu.I. Manin, Y. Tschinkel, Rational points of bounded height on Fano varieties. Inventiones Math. 95 (1989), 421–435. Erratum:“Rational points of bounded height on Fano varieties”. ibid. 105 (1990), 463. | MR: 974910 | Zbl: 0674.14012

[16] X. Gao, On Northcott’s theorem. Ph. D. Thesis, University of Colorado (1995).

[17] C. Hooley, On some topics connected with Waring’s problem. J. Reine Angew. Math. 369 (1986), 110–153. | MR: 850631 | Zbl: 0589.10052

[18] R. Louboutin, Sur la mesure de Mahler d’un nombre algébrique. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 707–708. | MR: 706663 | Zbl: 0557.12001

[19] D. Masser, J.D. Vaaler, Counting algebraic numbers with large height. Trans. Amer. Math. Soc. 359 (2007), 427–445. | MR: 2247898 | Zbl: pre05120555

[20] E.Peyre, Points de hauteur bornée et géométrie des variétés (d’après Y. Manin et al.). Séminaire Bourbaki, Vol. 2000/2001, 323–344. | Numdam | MR: 1975184 | Zbl: 1039.11045

[21] E. Peyre, Hauteurs et measure de Tamagawa sur les variétés de Fano. Duke Math. J. 79 (1995), 101–218. | MR: 1340296 | Zbl: 0901.14025

[22] P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque 251 (1998), 91–258. | MR: 1679841 | Zbl: 0959.14007

[23] S.H. Schanuel, Heights in number fields. Bull. Soc. Math. France 107 (1979), 433–449. | Numdam | MR: 557080 | Zbl: 0428.12009

[24] A. Schinzel, On the product of conjugates outside the unit circle of an algebraic integer. Acta Arith. XXIV (1973), 385–399. Addendum ibid. XXVI (1974/75), 329–331. | MR: 360515 | Zbl: 0275.12004

[25] W.M. Schmidt, Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height. Duke Math. J. 35 (1968), 327–339. | MR: 224562 | Zbl: 0172.06304

[26] W.M. Schmidt, Northcott’s theorem on heights II. The quadratic case. Acta Arith. LXX (1995), 343–375. | MR: 1330740 | Zbl: 0784.11055

[27] C.J. Smyth, On the product of conjugates outside the unit circle of an algebraic integer. Bull. London Math. Soc. 3 (1971), 169–175. | MR: 289451 | Zbl: 0235.12003

[28] C. Smyth, The Mahler measure of algebraic numbers: A survey. In Number Theory & Polynomials conference proceedings, London Math. Soc., Lecture Note Ser. 352, Cambridge Univ. Press, Cambridge 2008, 322–349. | MR: 2428530

[29] C.J. Smyth, On the measure of totally real algebraic numbers, I. J. Austral. Math. Soc. Ser. A 30 (1980/81), 137–149; II, Math. of Comp. 37 (1981), 205–208. | Zbl: 0457.12001

[30] L. Szpiro, E. Ullmo, S. Zhang, Equirépartition des petits points. Inventiones Math. 127 (1997), 337–347. | MR: 1427622 | Zbl: 0991.11035

[31] J.L.Thunder, Asymptotic estimates for the number of rational points of bounded height on flag varieties. Compos. Math. 88 (1993), 155–186. | Numdam | MR: 1237919 | Zbl: 0806.11030

[32] R.C. Vaughan, T.D. Wooley, On a certain nonary cubic form and related equations. Duke Math. J. 80 (1995), 669–735. | MR: 1370112 | Zbl: 0847.11052

[33] S. Zhang, Positive line bundles on arithmetic surfaces. Ann. of Math. (2) 136 (1995), 569–587. | MR: 1189866 | Zbl: 0788.14017

Cited by Sources: