In an earlier paper (joint with Min Ru), we proved a result on diophantine approximation to Cartier divisors, extending a 2011 result of P. Autissier. This was recently extended to certain closed subschemes (in place of divisors) by Ru and Wang. In this paper we extend this result to a broader class of closed subschemes. We also show that some notions of coincide, and that they can all be evaluated as limits.
Dans un article antérieur (en commun avec Min Ru), nous avons prouvé un résultat sur l’approximation diophantienne relativement aux diviseurs de Cartier, en généralisant un résultat de 2011 de P. Autissier. Cela a été récemment étendu à certains sous-schémas fermés (à la place de diviseurs) par Ru et Wang. Dans cet article, nous étendons ce résultat à une classe de sous-schémas fermés plus large. Nous montrons également que certaines notions de coïncident, et qu’elles peuvent toutes être évaluées comme des limites.
Revised:
Accepted:
Published online:
Keywords: Nevanlinna constant, b-divisors, closed subscheme

@article{JTNB_2023__35_1_17_0, author = {Paul Vojta}, title = {Birational {Nevanlinna} {Constants,} {Beta} {Constants,} and {Diophantine} {Approximation} to {Closed} {Subschemes}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {17--61}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {1}, year = {2023}, doi = {10.5802/jtnb.1237}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1237/} }
TY - JOUR AU - Paul Vojta TI - Birational Nevanlinna Constants, Beta Constants, and Diophantine Approximation to Closed Subschemes JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 17 EP - 61 VL - 35 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1237/ DO - 10.5802/jtnb.1237 LA - en ID - JTNB_2023__35_1_17_0 ER -
%0 Journal Article %A Paul Vojta %T Birational Nevanlinna Constants, Beta Constants, and Diophantine Approximation to Closed Subschemes %J Journal de théorie des nombres de Bordeaux %D 2023 %P 17-61 %V 35 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1237/ %R 10.5802/jtnb.1237 %G en %F JTNB_2023__35_1_17_0
Paul Vojta. Birational Nevanlinna Constants, Beta Constants, and Diophantine Approximation to Closed Subschemes. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 17-61. doi : 10.5802/jtnb.1237. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1237/
[1] Sur la non-densité des points entiers, Duke Math. J., Volume 158 (2011) no. 1, pp. 13-27 | MR | Zbl
[2] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI
[3] A generalized Schmidt subspace theorem for closed subschemes, Am. J. Math., Volume 143 (2021) no. 1, pp. 213-226 | DOI | MR | Zbl
[4] Regular sequences of ideals, Beitr. Algebra Geom., Volume 52 (2011) no. 2, pp. 479-485 | DOI | Zbl
[5] Fundamentals of Diophantine geometry, Springer, 1983 | DOI
[6] Positivity in Algebraic Geometry I, II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 48, 49, Springer, 2004
[7] A defect relation for holomorphic curves intersecting general divisors in projective varieties, J. Geom. Anal., Volume 26 (2016) no. 4, pp. 2751-2776 | MR | Zbl
[8] On a general Diophantine inequality, Funct. Approximatio, Comment. Math., Volume 56 (2017) no. 2, pp. 143-163 | MR | Zbl
[9] A birational Nevanlinna constant and its consequences, Am. J. Math., Volume 142 (2020) no. 3, pp. 957-991 | MR | Zbl
[10] An Evertse–Ferretti Nevanlinna constant and its consequences, Monatsh. Math., Volume 196 (2021), pp. 305-334 | DOI | MR | Zbl
[11] A subspace theorem for subvarieties, Algebra Number Theory, Volume 11 (2017) no. 10, pp. 2323-2337 | MR | Zbl
[12] The Ru–Vojta result for subvarieties, Int. J. Number Theory, Volume 18 (2022) no. 1, pp. 61-74 | MR | Zbl
[13] Arithmetic distance functions and height functions in diophantine geometry, Math. Ann., Volume 279 (1987) no. 1-2, pp. 193-216 | DOI | MR | Zbl
[14] Stacks Project, 2020 (http://stacks.math.columbia.edu)
[15] A refinement of Schmidt’s Subspace Theorem, Am. J. Math., Volume 111 (1989) no. 3, pp. 489-518 | DOI | MR | Zbl
[16] Diophantine approximation and Nevanlinna theory, Arithmetic geometry (Lecture Notes in Mathematics), Volume 2009, Springer, 2011, pp. 111-224 | DOI | MR
[17] Roth’s Theorem over arithmetic function fields, Algebra Number Theory, Volume 15 (2021) no. 8, pp. 1943-2017 | DOI | MR | Zbl
[18] Algebro-geometric version of Nevanlinna’s lemma on logarithmic derivative and applications, Nagoya Math. J., Volume 173 (2004), pp. 23-63 | DOI | MR | Zbl
Cited by Sources: