Approximation of values of algebraic elements over the ring of power sums
Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 63-86.

Let be the set of power sums whose characteristic roots belong to and whose coefficients belong to , i.e. G: satisfies

G(n)=G n =b 1 c 1 n ++b h c h n

with c 1 ,,c h and b 1 ,,b h . Furthermore, let f[x,y] be absolutely irreducible and α: ¯ be a solution y of f(G n ,y)=0, i.e. f(G n ,α(n))=0 identically in n. Then we will prove under suitable assumptions a lower bound, valid for all but finitely many positive integers n, for the approximation error if α(n) is approximated by rational numbers with bounded denominator. After that we will also consider the case that α is a solution of

f(G n (0) ,,G n (d) ,y)=0,

i.e. defined by using more than one power sum and a polynomial f satisfying some suitable conditions. This extends results of Bugeaud, Corvaja, Luca, Scremin and Zannier.

Soit l’ensemble des sommes de puissances dont les racines caractéristiques sont dans et dont les coefficients sont dans , i.e. les éléments G: de sont de la forme

G(n)=G n =b 1 c 1 n ++b h c h n

avec c 1 ,,c h et b 1 ,,b h . De plus, soit f[x,y] un polynôme absolument irréductible et soit α: ¯ une solution y de f(G n ,y)=0, i.e. la fonction f(G n ,α(n)) est identiquement nulle en n. Si α(n) est approximé par des nombres rationnels à dénominateur borné, nous établissons, sous conditions appropriées, une borne inférieure pour l’erreur d’approximation qui est valable pour tous les n sauf un nombre fini. Nous considérons ensuite le cas où α est une solution de l’équation

f(G n (0) ,,G n (d) ,y)=0,

i.e. α est défini à l’aide de plus d’une somme de puissances et d’un polynôme f satisfaisant à des conditions appropriées. Ce résultat est une extension des résultats de Bugeaud, Corvaja, Luca, Scremin et Zannier.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1247
Classification: 11B37, 11J68, 11J87
Keywords: Power sum, Diophantine approximation, Subspace theorem
Clemens Fuchs 1; Sebastian Heintze 2

1 University of Salzburg, Department of Mathematics, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
2 Graz University of Technology, Institute of Analysis and Number Theory, Steyrergasse 30/II, A-8010 Graz, Austria
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2023__35_1_63_0,
     author = {Clemens Fuchs and Sebastian Heintze},
     title = {Approximation of values of algebraic elements over the ring of power sums},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {63--86},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {1},
     year = {2023},
     doi = {10.5802/jtnb.1247},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1247/}
}
TY  - JOUR
AU  - Clemens Fuchs
AU  - Sebastian Heintze
TI  - Approximation of values of algebraic elements over the ring of power sums
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 63
EP  - 86
VL  - 35
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1247/
DO  - 10.5802/jtnb.1247
LA  - en
ID  - JTNB_2023__35_1_63_0
ER  - 
%0 Journal Article
%A Clemens Fuchs
%A Sebastian Heintze
%T Approximation of values of algebraic elements over the ring of power sums
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 63-86
%V 35
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1247/
%R 10.5802/jtnb.1247
%G en
%F JTNB_2023__35_1_63_0
Clemens Fuchs; Sebastian Heintze. Approximation of values of algebraic elements over the ring of power sums. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 63-86. doi : 10.5802/jtnb.1247. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1247/

[1] Yuri F. Bilu The many faces of the subspace theorem [after Adamczewski, Bugeaud, Corvaja, Zannier...], Séminaire Bourbaki. Volume 2006/2007. Exposés 967–981 (Astérisque), Volume 317, Société Mathématique de France, 2008, pp. 1-38 (Exp. No. 967) | Zbl

[2] Yann Bugeaud; Florian Luca On the period of the continued fraction expansion of 2 2n+1 +1, Indag. Math., New Ser., Volume 16 (2005) no. 1, pp. 21-35

[3] John Coates Construction of rational functions on a curve, Proc. Camb. Philos. Soc., Volume 68 (1970), pp. 105-123

[4] Pietro Corvaja; Umberto Zannier On the length of the continued fraction for values of quotients of power sums, J. Théor. Nombres Bordeaux, Volume 17 (2005) no. 3, pp. 737-748

[5] Clemens Fuchs Polynomial-exponential equations and linear recurrences, Glas. Mat., III. Ser., Volume 38 (2003) no. 2, pp. 233-252

[6] Clemens Fuchs; Sebastian Heintze Integral zeros of a polynomial with linear recurrences as coefficients, Indag. Math., New Ser., Volume 32 (2021) no. 3, pp. 691-703

[7] Steven G. Krantz; Harold R. Parks The Implicit Function Theorem: History, Theory, and Applications, Birkhäuser, 2002

[8] Steven G. Krantz; Harold R. Parks A Primer of Real Analytic Functions, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2002

[9] Amedeo Scremin On the period of the continued fraction for values of the square root of power sums, Acta Arith., Volume 123 (2006) no. 4, pp. 297-312

[10] Umberto Zannier Lecture notes on Diophantine analysis (with an appendix by Francesco Amoroso), Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 8, Edizioni della Normale, 2009

Cited by Sources: