Soit
avec
i.e.
Let
with
i.e. defined by using more than one power sum and a polynomial
Révisé le :
Accepté le :
Publié le :
Mots-clés : Power sum, Diophantine approximation, Subspace theorem
Clemens Fuchs 1 ; Sebastian Heintze 2

@article{JTNB_2023__35_1_63_0, author = {Clemens Fuchs and Sebastian Heintze}, title = {Approximation of values of algebraic elements over the ring of power sums}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {63--86}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {1}, year = {2023}, doi = {10.5802/jtnb.1247}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1247/} }
TY - JOUR AU - Clemens Fuchs AU - Sebastian Heintze TI - Approximation of values of algebraic elements over the ring of power sums JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 63 EP - 86 VL - 35 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1247/ DO - 10.5802/jtnb.1247 LA - en ID - JTNB_2023__35_1_63_0 ER -
%0 Journal Article %A Clemens Fuchs %A Sebastian Heintze %T Approximation of values of algebraic elements over the ring of power sums %J Journal de théorie des nombres de Bordeaux %D 2023 %P 63-86 %V 35 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1247/ %R 10.5802/jtnb.1247 %G en %F JTNB_2023__35_1_63_0
Clemens Fuchs; Sebastian Heintze. Approximation of values of algebraic elements over the ring of power sums. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 63-86. doi : 10.5802/jtnb.1247. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1247/
[1] The many faces of the subspace theorem [after Adamczewski, Bugeaud, Corvaja, Zannier...], Séminaire Bourbaki. Volume 2006/2007. Exposés 967–981 (Astérisque), Volume 317, Société Mathématique de France, 2008, pp. 1-38 (Exp. No. 967) | Zbl
[2] On the period of the continued fraction expansion of
[3] Construction of rational functions on a curve, Proc. Camb. Philos. Soc., Volume 68 (1970), pp. 105-123
[4] On the length of the continued fraction for values of quotients of power sums, J. Théor. Nombres Bordeaux, Volume 17 (2005) no. 3, pp. 737-748
[5] Polynomial-exponential equations and linear recurrences, Glas. Mat., III. Ser., Volume 38 (2003) no. 2, pp. 233-252
[6] Integral zeros of a polynomial with linear recurrences as coefficients, Indag. Math., New Ser., Volume 32 (2021) no. 3, pp. 691-703
[7] The Implicit Function Theorem: History, Theory, and Applications, Birkhäuser, 2002
[8] A Primer of Real Analytic Functions, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2002
[9] On the period of the continued fraction for values of the square root of power sums, Acta Arith., Volume 123 (2006) no. 4, pp. 297-312
[10] Lecture notes on Diophantine analysis (with an appendix by Francesco Amoroso), Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 8, Edizioni della Normale, 2009
- Some arithmetical properties of convergents to algebraic numbers, Pacific Journal of Mathematics, Volume 326 (2023) no. 1, pp. 17-36 | DOI:10.2140/pjm.2023.326.17 | Zbl:1545.11068
- Diophantine approximations. Abstracts from the workshop held April 17–23, 2022, Oberwolfach Rep. 19, No. 2, 1091-1164, 2022 | DOI:10.4171/owr/2022/21 | Zbl:1519.00014
Cité par 2 documents. Sources : zbMATH