We give an optimal version of the classical “three-gap theorem” on the fractional parts of , in the case where is an irrational number that is badly approximable. As a consequence, we deduce a version of Kronecker’s inhomogeneous approximation theorem in one dimension for badly approximable numbers. We apply these results to obtain an improved measure of sequence diversity for characteristic Sturmian sequences, where the slope is badly approximable.
Nous donnons une version optimale du théorème classique des “trois distances” concernant les parties fractionnaires de , dans le cas où est un nombre irrationnel qui est mal approchable. Comme conséquence, nous obtenons une version du théorème d’approximation inhomogène de Kronecker, en une dimension, pour les nombres mal approchables. Nous appliquons ces résultats à l’obtention d’une mesure améliorée de la “diversité” des suites sturmiennes caractéristiques dont la pente est mal approchable.
Revised:
Accepted:
Published online:
Keywords: badly approximable number, bounded partial quotients, continued fraction, Kronecker’s theorem, Sturmian characteristic sequence, three-gap theorem, measure of diversity
@article{JTNB_2023__35_1_1_0, author = {Dmitry Badziahin and Jeffrey Shallit}, title = {Badly approximable numbers, {Kronecker{\textquoteright}s} theorem, and diversity of {Sturmian} characteristic sequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--15}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {1}, year = {2023}, doi = {10.5802/jtnb.1236}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1236/} }
TY - JOUR AU - Dmitry Badziahin AU - Jeffrey Shallit TI - Badly approximable numbers, Kronecker’s theorem, and diversity of Sturmian characteristic sequences JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 1 EP - 15 VL - 35 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1236/ DO - 10.5802/jtnb.1236 LA - en ID - JTNB_2023__35_1_1_0 ER -
%0 Journal Article %A Dmitry Badziahin %A Jeffrey Shallit %T Badly approximable numbers, Kronecker’s theorem, and diversity of Sturmian characteristic sequences %J Journal de théorie des nombres de Bordeaux %D 2023 %P 1-15 %V 35 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1236/ %R 10.5802/jtnb.1236 %G en %F JTNB_2023__35_1_1_0
Dmitry Badziahin; Jeffrey Shallit. Badly approximable numbers, Kronecker’s theorem, and diversity of Sturmian characteristic sequences. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 1-15. doi : 10.5802/jtnb.1236. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1236/
[1] Three distance theorems and combinatorics on words, Enseign. Math., Volume 44 (1998) no. 1-2, pp. 103-132 | MR | Zbl
[2] Sturmian words, Algebraic Combinatorics on Words (Encyclopedia of Mathematics and Its Applications), Volume 90, Cambridge University Press, 2002, pp. 45-110
[3] Une remarque sur la répartition des nombres , Colloq. Math., Volume 2 (1951), pp. 323-324
[4] The distribution of the sequence (), Proc. Camb. Philos. Soc., Volume 61 (1965), pp. 665-670 | DOI | MR
[5] An Introduction to the Theory of Numbers, Oxford University Press, 1979
[6] Linear fractional transformations of continued fractions with bounded partial quotients, J. Théor. Nombres Bordeaux, Volume 9 (1997) no. 2, pp. 267-279 corrigendum in ibid. 15 (2003), no. 3, p. 741-743 | DOI | Numdam | MR | Zbl
[7] The three gap theorem (Steinhaus conjecture), J. Aust. Math. Soc., Volume 45 (1988) no. 3, pp. 360-370 | DOI | MR | Zbl
[8] Characteristics and the three gap theorem, Fibonacci Q., Volume 28 (1990) no. 3, pp. 204-214 | MR | Zbl
[9] Real numbers with bounded partial quotients, Enseign. Math., Volume 38 (1992) no. 1-2, pp. 151-187 | MR | Zbl
[10] Automaticity IV: Sequences, sets, and diversity, J. Théor. Nombres Bordeaux, Volume 8 (1996) no. 2, pp. 347-367 | DOI | Numdam | MR | Zbl
[11] The distribution of the integers for which , Proc. Camb. Philos. Soc., Volume 46 (1950), pp. 525-534 | DOI | MR
[12] On the theory of diophantine approximations. I, Acta Math. Acad. Sci. Hung., Volume 8 (1957), pp. 461-471 | MR | Zbl
[13] Über die Anordnung der Vielfachen einer reellen Zahl mod 1, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 1 (1958), pp. 107-111 | Zbl
[14] On successive settings of an arc on the circumference of a circle, Fundam. Math., Volume 46 (1958), pp. 187-189 | DOI | MR
Cited by Sources: