Nous donnons une version optimale du théorème classique des “trois distances” concernant les parties fractionnaires de
We give an optimal version of the classical “three-gap theorem” on the fractional parts of
Révisé le :
Accepté le :
Publié le :
Mots-clés : badly approximable number, bounded partial quotients, continued fraction, Kronecker’s theorem, Sturmian characteristic sequence, three-gap theorem, measure of diversity
Dmitry Badziahin 1 ; Jeffrey Shallit 2

@article{JTNB_2023__35_1_1_0, author = {Dmitry Badziahin and Jeffrey Shallit}, title = {Badly approximable numbers, {Kronecker{\textquoteright}s} theorem, and diversity of {Sturmian} characteristic sequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--15}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {1}, year = {2023}, doi = {10.5802/jtnb.1236}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1236/} }
TY - JOUR AU - Dmitry Badziahin AU - Jeffrey Shallit TI - Badly approximable numbers, Kronecker’s theorem, and diversity of Sturmian characteristic sequences JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 1 EP - 15 VL - 35 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1236/ DO - 10.5802/jtnb.1236 LA - en ID - JTNB_2023__35_1_1_0 ER -
%0 Journal Article %A Dmitry Badziahin %A Jeffrey Shallit %T Badly approximable numbers, Kronecker’s theorem, and diversity of Sturmian characteristic sequences %J Journal de théorie des nombres de Bordeaux %D 2023 %P 1-15 %V 35 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1236/ %R 10.5802/jtnb.1236 %G en %F JTNB_2023__35_1_1_0
Dmitry Badziahin; Jeffrey Shallit. Badly approximable numbers, Kronecker’s theorem, and diversity of Sturmian characteristic sequences. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 1-15. doi : 10.5802/jtnb.1236. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1236/
[1] Three distance theorems and combinatorics on words, Enseign. Math., Volume 44 (1998) no. 1-2, pp. 103-132 | MR | Zbl
[2] Sturmian words, Algebraic Combinatorics on Words (Encyclopedia of Mathematics and Its Applications), Volume 90, Cambridge University Press, 2002, pp. 45-110
[3] Une remarque sur la répartition des nombres
[4] The distribution of the sequence
[5] An Introduction to the Theory of Numbers, Oxford University Press, 1979
[6] Linear fractional transformations of continued fractions with bounded partial quotients, J. Théor. Nombres Bordeaux, Volume 9 (1997) no. 2, pp. 267-279 corrigendum in ibid. 15 (2003), no. 3, p. 741-743 | DOI | Numdam | MR | Zbl
[7] The three gap theorem (Steinhaus conjecture), J. Aust. Math. Soc., Volume 45 (1988) no. 3, pp. 360-370 | DOI | MR | Zbl
[8] Characteristics and the three gap theorem, Fibonacci Q., Volume 28 (1990) no. 3, pp. 204-214 | MR | Zbl
[9] Real numbers with bounded partial quotients, Enseign. Math., Volume 38 (1992) no. 1-2, pp. 151-187 | MR | Zbl
[10] Automaticity IV: Sequences, sets, and diversity, J. Théor. Nombres Bordeaux, Volume 8 (1996) no. 2, pp. 347-367 | DOI | Numdam | MR | Zbl
[11] The distribution of the integers
[12] On the theory of diophantine approximations. I, Acta Math. Acad. Sci. Hung., Volume 8 (1957), pp. 461-471 | MR | Zbl
[13] Über die Anordnung der Vielfachen einer reellen Zahl mod 1, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 1 (1958), pp. 107-111 | Zbl
[14] On successive settings of an arc on the circumference of a circle, Fundam. Math., Volume 46 (1958), pp. 187-189 | DOI | MR
Cité par Sources :