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Birational Nevanlinna Constants, Beta Constants,
and Diophantine Approximation to Closed

Subschemes

par Paul VOJTA

Résumé. Dans un article antérieur (en commun avec Min Ru), nous avons
prouvé un résultat sur l’approximation diophantienne relativement aux divi-
seurs de Cartier, en généralisant un résultat de 2011 de P. Autissier. Cela a
été récemment étendu à certains sous-schémas fermés (à la place de diviseurs)
par Ru et Wang. Dans cet article, nous étendons ce résultat à une classe de
sous-schémas fermés plus large. Nous montrons également que certaines no-
tions de β(L , D) coïncident, et qu’elles peuvent toutes être évaluées comme
des limites.

Abstract. In an earlier paper (joint with Min Ru), we proved a result on
diophantine approximation to Cartier divisors, extending a 2011 result of
P. Autissier. This was recently extended to certain closed subschemes (in
place of divisors) by Ru and Wang. In this paper we extend this result to
a broader class of closed subschemes. We also show that some notions of
β(L , D) coincide, and that they can all be evaluated as limits.

1. Introduction

Let k be either a number field or the field C of complex numbers, and
let X be a complete variety over k (see Section 2 for detailed definitions).
We recall the following from our earlier joint work [9] with M. Ru.

Definition 1.1 ([9, Def. 1.9]). Let L be a big line sheaf on X and let D
be a nonzero effective Cartier divisor on X. Then

(1.1.1) β(L , D) = lim inf
N→∞

∑∞
m=1 h0(X, L N (−mD))

Nh0(X, L N ) .

(In this paper L N always means L ⊗N , the tensor power of N copies of L .)

Theorem 1.2 ([9, “General Theorem”]). Let k and X be as above, let L
be a big line sheaf on X, and let D1, . . . , Dq be nonzero effective Cartier
divisors on X that intersect properly (i.e., for any nonempty I ⊆ {1, . . . , q}
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and any x ∈
⋂

i∈I Supp Di, the divisors Di, i ∈ I are locally generated near
x by a regular sequence in OX,x).

(a) (Arithmetic part) Assume that k is a number field, and let S be
a finite set of places of k. Then, for all ϵ > 0, there is a proper
Zariski-closed subset Z of X such that the inequality

(1.2.1)
q∑

i=1
β(L , Di)mS(Di, x) ≤ (1 + ϵ)hL (x) + O(1)

holds for all points x ∈ X(k) \ Z.
(b) (Analytic part) Assume that k = C. Then, for all ϵ > 0, there is a

proper Zariski-closed subset Z of X such that the inequality

(1.2.2)
q∑

i=1
β(L , Di)mf (Di, r) ≤exc (1 + ϵ)Tf,L (r)

holds for all holomorphic mappings f : C → X whose image is not
contained in Z. The subscript “exc” means that the inequality holds
for all r ∈ (0,∞) outside of a set of finite Lebesgue measure.

Remark 1.3. Part (b) in this theorem has been strengthened so that it
applies to all f whose image is not contained in Z, whereas in [9] f was
required to have Zariski-dense image. This version can be obtained by re-
vising the statements of Theorem 2.7 (see Remark 2.8), Theorem 2.11,
Theorem 1.4, and the Main Theorem of [9] accordingly, where Z depends
on ϵ only in the last two theorems.

The main purpose of this paper is to generalize Theorem 1.2 to replace
the divisors Di with proper closed subschemes Yi.

Upon circulating an early version of this paper, I was informed that
Ru and Wang [12] had already proved a version of Theorem 1.2 for closed
subschemes. However, the version presented here is somewhat more general.

For both the work of Ru and Wang and the present paper, extending
Theorem 1.2 to closed subschemes involves defining what it means for the
subschemes Yi to intersect properly. In both cases this is done using regular
sequences—see Remark 3.11 and Definition 4.1. However, the details of this
definition are different in the two papers, and this is the main difference
between them.

For example, if X is Cohen–Macaulay (e.g., if it is nonsingular), then
the Yi intersect properly, in the sense of the present paper, if and only if (i)
at each intersection point x, each of the Yi passing through x is generated
by monomials in the elements of some regular sequence in the local ring,
and (ii) the subschemes Yi are in general position (in other words, they
intersect properly in the sense of intersection theory). See Definitions 3.4
and 3.9. This condition is only needed at points where two or more of the Yi
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intersect, leading to a definition that they “weakly intersect properly” (Def-
inition 4.1(c)). The definition of Ru and Wang uses the stronger condition
that the ideals are generated by the actual elements of a regular sequence.
In particular, (in the Cohen–Macaulay case) their result requires each Yi

to be a local complete intersection as a scheme, but this paper relaxes this
condition somewhat—see Remark 3.11.

The generalization of Theorem 1.2 to be proved here is stated below as
Theorem 1.9. This statement also describes the main theorem of Ru and
Wang [12], except that it is relative to the notion of proper intersection
described in Remark 3.11 instead of Definition 4.1.

Heier and Levin [3] have also proved a diophantine theorem on approx-
imation to proper closed subschemes. In their theorem, closed subschemes
of codimension r may be repeated up to r times. In this paper, as well as
in the paper of Ru and Wang, however, subschemes may not be repeated.
Instead, β(L , Yi) is usually larger for such subschemes, as is the case for
linear subspaces of projective space (Proposition 13.2).

The theorem of Heier and Levin is stated and discussed more thoroughly
later in this Introduction (see Theorem 1.11).

The definition of β(L , Y ) for a proper closed subscheme Y of X is a
straightforward extension of (1.1.1):

Definition 1.4 (Ru and Wang [12, Def. 1.2]). Let L be a big line sheaf
on X, let Y be a nonempty proper closed subscheme of X, and let I be
the sheaf of ideals corresponding to Y . Then

(1.4.1) β(L , Y ) = lim inf
N→∞

∑∞
m=1 h0(X, L N ⊗I m)

Nh0(X, L N ) .

Remark 1.5. A closely related definition was given by Ru and Wang [11,
Def. 1.1]:

(1.5.1) βL ,Y = lim inf
N→∞

∑∞
m=1 h0(W, π∗L N (−mE))

Nh0(X, L N ) ,

where π : W → X is the blowing-up of X along Y and E is the exceptional
divisor, so in particular the two definitions coincide when Y is an effec-
tive Cartier divisor. In fact, they coincide for all Y ; see Ru and Wang [12,
Rem. 1.3] when X is Cohen–Macaulay and Y is a local complete intersec-
tion, or Corollary 6.9 for the general case.

Remark 1.6. There is a “birational” version of Definition 1.1, in which D
is replaced by a Cartier b-divisor D. This constant is denoted β(L , D);
see Definition 6.5. Since a proper closed subscheme is a special case of a
b-divisor (see Definition 6.7), this leads to a constant β(L , Y) defined by a
slightly different limit. This, as it turns out, has the same value as β(L , Y )
and βL ,Y —see Corollary 6.9. Note also that in Definitions 1.1, 1.5, 6.5,
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and 1.4, the lim inf can be replaced by a limit whenever char k = 0. This is
proved in Section 7.

Another major goal of this paper is to show that these three beta con-
stants all coincide (Corollary 6.9).

Remark 1.7. The proof of Theorem 1.9 uses β(L , Y ). This is because the
Autissier property (see below) is not preserved by blowing up, so we work
on X (not on a model W ).

Remark 1.8. It is possible to let D be an R-Cartier b-divisor in the definition
of β(L , D). We have not done that here, though, as it would not provide
any benefit (so far), but would involve additional complexity.

One defines Weil functions relative to proper closed subschemes Y on X
by blowing up X along Y to obtain a Cartier divisor on the blow-up; see for
example Silverman [13, 2.2] or Yamanoi [18, 2.2], in combination with [13,
Thm. 2.1(h)]. These can then be used to define proximity and counting
functions for Y (see Section 12).

Another goal of this paper (suggested by the referee, to whom I am very
thankful) stems from the following fact. In Schmidt’s Subspace Theorem,
it is essential for many applications that the set of hyperplanes be allowed
to vary with the places v ∈ S. In Nevanlinna theory, though, where the
set corresponding to S is infinite, it is more natural to take finitely many
collections of hyperplanes, and then take the maximum of the corresponding
Weil functions at each value of θ ∈ [0, 2π] when defining the proximity
function. This is also the case for Roth’s theorem over arithmetic function
fields [17, Thm. 4.5], where the set of archimedean places is infinite (unless
the field is a number field). Of course, when S is finite, the two formulations
are equivalent, by a standard pigeonhole argument.

Having provided this background, the main theorem of this paper is as
follows.

Theorem 1.9. Let X be a complete variety over a field k, let L be a big line
sheaf on X, and let p ∈ Z>0. For each i = 1, . . . , p let Yi,1, . . . , Yi,qi be proper
closed subschemes of X that weakly intersect properly (see Definition 4.1).

(a) (Arithmetic part) Assume that k is a number field, let S be a finite
set of places of k, and for all i and j and all v ∈ S let λYi,j ,v be a
Weil function for Yi,j at v. Then, for all ϵ > 0 and all C ∈ R, there
is a proper Zariski-closed subset Z of X such that the inequality

(1.9.1) 1
[k : Q]

∑
v∈S

max
i

∑
j

β(L , Yi,j)λYi,j ,v(x) ≤ (1 + ϵ)hL (x) + C

holds for all points x ∈ X(k) \ Z.
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(b) (Analytic part) Assume that k = C. For all i and j let λYi,j be
a Weil function for Yi,j on X(C). Then, for all ϵ > 0, there is a
proper Zariski-closed subset Z of X such that the inequality

(1.9.2)
∫ 2π

0
max

i

∑
j

β(L , Yi,j)λYi,j (f(re
√

−1θ))dθ

2π
≤exc (1 + ϵ)Tf,L (r)

holds for all holomorphic mappings f : C → X whose image is not
contained in Z.

This theorem reduces to Theorem 1.2 when p = 1 and Y1,1, . . . , Y1,q1 are
Cartier divisors D1, . . . , Dq, respectively.

Diophantine inequalities for closed subschemes have already been ob-
tained by other authors. For example, Ru and Wang [11] proved the in-
equality

q∑
i=1

mS(Yi, x) ≤
(

ℓ max
i

β(L , Yi)−1 + ϵ

)
hL (x) ,

where at most ℓ of the Yi have nonempty intersection. This overlaps with
our results here, but is not fully implied by our Theorem 1.9 because the
latter theorem requires that the Yi weakly intersect properly, but Ru and
Wang only need the condition involving ℓ.

As noted earlier, Heier and Levin [3] also have an inequality involving
closed subschemes. Their theorem again has weaker conditions on the Yi

(and in fact it allows some Yi of codimension > 1 to be repeated).
Their theorem relies on a notion of “general position” for closed sub-

schemes which is different from that used here.

Definition 1.10. Let X be a projective variety of dimension n. We say
that closed subschemes Y1, . . . , Yq of X are in HL-general position if
codim

⋂
i∈I Yi ≥ |I| for all I ⊆ {1, . . . , q} with |I| ≤ n + 1, using the

convention that codim ∅ = n + 1.

Theorem 1.11 (Heier and Levin [3, Thm. 1.3]). Let X be a projective
variety of dimension n over a number field k, and let S be a finite set of
places of k. For each v ∈ S let Y0,v, . . . , Yn,v be closed subschemes of X in
HL-general position. Let A be an ample line sheaf on X, and let ϵ > 0.
Then there exists a proper Zariski-closed subset Z of X such that for all
points x ∈ X(k) \ Z,

(1.11.1)
∑
v∈S

n∑
i=0

ϵYi,v ,A λYi,v ,v(x) < (n + 1 + ϵ)hA (x) .

Here ϵY,A denotes the Seshadri constant of the closed subscheme Y with
respect to A (see [3, Def. 2.3]) and λY,v denotes the local Weil function for
Y at v (see our earlier joint work with M. Ru [9, §2.3]).
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For simplicity of notation, we compare Theorems 1.9 and 1.11 only in
the special case p = 1. For Theorem 1.11, this means that Y1, . . . , Yq are
closed subschemes of X in HL-general position, and (1.11.1) reduces to

(1.12)
q∑

i=1
ϵYi,A mS(Yi, x) < (n + 1 + ϵ)hA (x) .

For Theorem 1.9, Y1, . . . , Yq are closed subschemes of X that weakly
intersect properly, and the left-hand side of (1.9.1) can be replaced by∑q

i=1 β(L , Yi)mS(Yi, x).
On the one hand, Theorem 1.11 is much stronger than Theorem 1.9,

because HL-general position is more lenient (for example, some of the Yi

may be proper subschemes of others).
On the other hand, assume that X is nonsingular, that each Yi occurs ex-

actly codim Yi times in the list Y1, . . . , Yq, and that each Yi is a locally com-
plete intersection. Then Theorem 1.11 is a consequence of Theorem 1.9(a).
Indeed, by Heier and Levin [3, Thm. 4.2], if Y is a closed subscheme of
codimension r > 0, then

(1.13) r

n + 1ϵY,A ≤ βA ,Y .

(This is proved using Autissier’s method.) Let Z1, . . . , Zq′ be the distinct
elements of {Y1 . . . , Yq}. Then Z1, . . . , Zq′ intersect properly. By (1.13),
Corollary 6.9, and Theorem 1.9(a), we then have

q∑
i=1

ϵYi,A mS(Yi, x) =
q′∑

j=1
(codim Zj)ϵZj ,A mS(Zj , x)

≤ (n + 1)
q′∑

j=1
βA ,Zj

mS(Zj , x)

≤ (n + 1 + ϵ)hA (x) + 1
< (n + 1 + ϵ)hA (x)

for all x ∈ X(k) outside of a proper Zariski-closed subset.
Of course, this is a very special case of Theorem 1.11.
See also Theorem 13.3.
Theorem 1.9 will be proved by splitting it up into two theorems, involving

a property due originally to Autissier [1, Lem. 3.3]; see also Lemma 3.3.
This will be expressed by saying that closed subschemes Y1, . . . , Yq have
the Autissier property; see Definition 4.2.

These two theorems are the following.

Theorem 1.14. Let X be a complete variety over a field k, and let
Y1, . . . , Yq be proper closed subschemes of X. If Y1, . . . , Yq weakly intersect
properly, then they have the Autissier property.
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Theorem 1.15. Let k be either a number field or the field C, let X be a
complete variety over k, let L be a big line sheaf on X, let p > 0, and
for each i = 1, . . . , p let Yi,1, . . . , Yi,qi be proper closed subschemes of X
that have the Autissier property. Then the conclusion of part (a) or (b) of
Theorem 1.9 holds, if k is a number field or if k = C, respectively.

It is clear that the conjunction of these theorems implies Theorem 1.9.
The outline of the paper is as follows. Section 2 briefly gives some fun-

damental definitions used in the paper. Sections 3 and 4 give a version of
Autissier’s lemmas on ideals associated to saturated subsets of Nr, in the
local and global cases, respectively, leading up to the proof of Theorem 1.14
(see Proposition 4.3) and the proof in Section 5 that his function N(t) is
convex. These constitute the key insight of the paper. Section 6 develops
the machinery that will be used to work with the ideal sheaves associated
to the closed subschemes Yi in the paper. Section 7 gives a detailed proof
of the fact that the limits infima in (1.1.1), (1.4.1), (1.5.1), and (6.5.1) (the
definitions of β(L , D), β(L , Y ), βL ,Y , and β(L , D), respectively) can be
replaced by limits (in characteristic 0). This is needed in order to prove
Theorem 1.15 (and therefore Theorem 1.9) when p > 1. In particular, the
fact that the definition of β(L , Y ) converges as a limit (Corollary 7.4) is
needed in order to prove Corollary 9.12, which in turn is used in the proof
of Theorem 10.4. Section 8 adapts work of Autissier [1], as modified in joint
work [9] with M. Ru, to the current context, finishing the technical parts
of the proof. Section 9 gives some more information on the structure of
the group of R-Cartier b-divisors on a variety, and then restates the main
result of Section 8 in these terms. Sections 10 and 11 define “multidivisor”
versions of the birational Nevanlinna constant and the proximity function
for R-Cartier b-divisors, extending the definitions (for R-Cartier divisors)
of Ru and the author [10]. Section 12 then finishes the proof of Theorem 1.9.
Finally, Section 13 explores the special case of linear subvarieties of Pn.

I thank Min Ru for suggesting the idea of extending the Main Theorem
of [9] to subschemes. I also thank the referee for many suggestions, including
a much shorter proof of Proposition 13.2 and the idea of allowing p > 1 in
Theorem 1.9.

2. Basic Notation and Conventions

The basic notations of this paper follow those of our earlier work with
M. Ru [9, 10].

In this paper N = {0, 1, 2, . . . }. Also Z>0 = {1, 2, 3, . . . }, R≥0 = {x ∈ R :
x ≥ 0}, etc.

A variety over a field k is an integral scheme, separated and of finite type
over k. A morphism of varieties over k is a morphism of schemes over k.
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Subschemes will always be assumed to be closed and proper (i.e., not the
whole scheme).

3. A Property of Autissier

This section extends [1, Lem. 3.3] to accommodate subschemes of higher
codimension.

This lemma motivates a definition of a property of subschemes, which
basically says that they satisfy the conclusion of this lemma. This property
will be called the Autissier property; see Definitions 3.12 and 4.2. The entire
remainder of the proof of Theorem 1.9 hinges on this property.

Throughout this section, A is a noetherian local ring.
We start by recalling some definitions and a lemma of Autissier [1].

Definition 3.1. Let r ∈ Z>0. A subset N of Nr is saturated if it is nonempty
and if N ⊇ a + Nr for all a ∈ N .

Definition 3.2. Let ϕ1, . . . , ϕr ∈ A with r > 0, and let N be a saturated
subset of Nr. Then I (N) is the ideal of A generated by the set {ϕb1

1 . . . ϕbr
r :

b ∈ N}.

The key fact about this definition is the following lemma due to Autissier.

Lemma 3.3 ([1, Lem. 3.3]). Let ϕ1, . . . , ϕr (r > 0) be a regular sequence
in A, and let N1 and N2 be saturated subsets of Nr. Then

I (N1 ∩N2) = I (N1) ∩I (N2) .

Now we carry the above over to the situation of ideals in A.

Definition 3.4. Let I be an ideal of A and let ϕ1, . . . , ϕr be a sequence
of elements of A. Then I is of monomial type with respect to ϕ1, . . . , ϕr

if r > 0 and I = I (N) (taken relative to ϕ1, . . . , ϕr) for some saturated
subset N of Nr.

Note that if I is of monomial type with respect to some sequence
ϕ1, . . . , ϕr, then so is In for all n ∈ N. This is immediate from the fol-
lowing lemma.

Lemma 3.5. Let r ∈ Z>0 and let N be a saturated subset of Nr. For all
n ∈ N let

(3.5.1) nN =
{
Nr if n = 0;
{b1 + · · ·+ bn : b1, . . . , bn ∈ N} if n > 0 .

(When n > 0 this is the Minkowski sum of N with itself n times.) Then
(a) nN is saturated for all n;
(b) I (N)n = I (nN) for all n; and
(c) nN ⊆ mN for all n ≥ m ≥ 0.
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Proof. Left to the reader. □

As a counterpart to Definition 3.2, but with closed subschemes in place
of Cartier divisors, we have the following.

Definition 3.6. Let q ∈ Z>0, let I1, . . . , Iq be ideals in A, and let N be a
saturated subset of Nq. Then J (N) is the ideal of A defined by

J (N) =
∑
b∈N

Ib1
1 · · · I

bq
q .

This can be expressed in terms of I ( · ) as follows.

Definition 3.7. Let q ∈ Z>0. For each i = 1, . . . , q let Mi be a saturated
subset of Nri with ri ∈ Z>0. For all saturated subsets N of Nq, we then
define
(3.7.1) M(N) =

⋃
c∈N

c1M1 × · · · × cqMq .

This is a saturated subset of Nr, where r = r1 + · · ·+ rq.

Lemma 3.8. Let q ∈ Z>0. For each i = 1, . . . , q, let Mi be a saturated
subset of Nri and let Ii = I (Mi), taken relative to a nonempty sequence
ϕi1, . . . , ϕiri in A. Let N be a saturated subset of Nq. Then

J (N) = I (M(N)) ,

where J (N) is taken with respect to I1, . . . , Iq and I (M(N)) is taken with
respect to the sequence
(3.8.1) ϕ11, . . . , ϕ1r1 , . . . , ϕq1, . . . , ϕqrq .

Proof. This is immediate from Definitions 3.2, 3.6, and 3.7. See also Ru and
Wang [12, Lem. 3.3]. □

We can now state the main definitions and main result of this section.

Definition 3.9. Let I1, . . . , Iq be ideals of A, with q ∈ N. Then I1, . . . , Iq

intersect properly if (i) for each i = 1, . . . , q there is a nonempty regular
sequence ϕi1, . . . , ϕiri in A such that Ii is of monomial type with respect to
ϕi1, . . . , ϕiri ; and (ii) the combined sequence (3.8.1) is a regular sequence.

Remark 3.10. Since the length of the sequence (3.8.1) is at most dim A, we
must have q ≤ dim A whenever I1, . . . , Iq intersect properly.

Remark 3.11. Ru and Wang [12] say that I1, . . . , Iq intersect properly if,
in the notation of Definition 3.9, Ii is generated by ϕi1, . . . , ϕiri for all i
(and (3.8.1) is a regular sequence). In other words, this is the special case
of Definition 3.9 in which the subset N of Definition 3.4 equals Nr\{0}. One
then obtains their notion of subschemes Y1, . . . , Yq intersecting properly by
using this definition in place of Definition 3.9 in Definition 4.1.
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As an example, assume that X contains an open subset isomorphic to
A2

k = Spec k[x, y]. Then x, y is a regular sequence in the local ring at (0, 0),
so I = (x, y) satisfies the hypotheses of Ru and Wang’s theorem (and it
is also of monomial type with respect to x and y). The ideal (x3, xy, y2),
however, does not satisfy their condition, but it is of monomial type in x, y,
so it can be handled by Theorem 1.9.

Definition 3.12. Let I1, . . . , Iq be ideals in A. We say that they have the
Autissier property if

(3.12.1) J (N ∩N ′) = J (N) ∩J (N ′)

for all saturated subsets N and N ′ of Nq.

Proposition 3.13. Let I1, . . . , Iq be ideals in A. If they intersect properly,
then they have the Autissier property.

Proof. By Lemmas 3.8 and 3.3, we immediately reduce to showing that

(3.13.1) M(N ∩N ′) = M(N) ∩M(N ′) .

To prove this, we first need some basic facts on the product ordering on
Nq.

Recall that the product ordering on Nq is defined by a ≤ b if and only
if ai ≤ bi for all i = 1, . . . , q. This ordering is a lattice; in particular, for
any a, b ∈ Nq, the join, or least upper bound, of a and b is the element
a ∨ b = c ∈ Nq defined by ci = max{ai, bi} for all i.

Now we note that if N and N ′ are saturated subsets of Nq, then

(3.13.2) {c ∨ c′ : c ∈ N, c′ ∈ N ′} = N ∩N ′ .

Indeed, the inclusion “⊇” is immediate by taking c′ = c for all c ∈ N ∩N ′.
Conversely, if c′′ = c∨c′ with c ∈ N and c′ ∈ N ′, then c′′ ∈ N and c′′ ∈ N ′

because N and N ′ are saturated (respectively); hence c′′ ∈ N ∩N ′.
Then, by (3.7.1), distributivity of ∩ over ∪, compatibility of intersection

and product, Lemma 3.5(c), (3.13.2), and (3.7.1) again, we have

M(N) ∩M(N ′) =
( ⋃

c∈N

c1M1 × · · · × cqMq

)
∩

 ⋃
c′∈N ′

c′
1M1 × · · · × c′

qMq


=

⋃
c∈N

c′∈N ′

(
(c1M1 × · · · × cqMq) ∩ (c′

1M1 × · · · × c′
qMq)

)
=
⋃
c,c′

(
(c1M1 ∩ c′

1M1)× · · · × (cqMq ∩ c′
qMq)

)
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=
⋃
c,c′

max{c1, c′
1}M1 × · · · ×max{cq, c′

q}Mq

=
⋃

c′′∈N∩N ′

c′′
1M1 × · · · × c′′

qMq

= M(N ∩N ′) .

This gives (3.13.1). □

Turning to consequences of the Autissier property, in the local setting
we only need the following.

Proposition 3.14 ([1, Rem. 3.4] and [9, Rem. 6.3]). Let q ∈ Z>0, let

(3.14.1) □ = Rq
≥0 \ {0} ,

and for all t ∈ □ and all x ∈ R≥0 let

(3.14.2) N(t, x) = {b ∈ Nq : t1b1 + · · ·+ tqbq ≥ x} .

Let I1, . . . , Iq be ideals in A that have the Autissier property. Then

(3.14.3) J (N(t, x))∩J (N(u, y)) ⊆J (N(λt+(1−λ)u, λx+(1−λ)y))

for all t, u ∈ □, all x, y ∈ R≥0, and all λ ∈ [0, 1].

Proof. This is immediate from Definition 3.12 and the observation that

N(t, x) ∩N(u, y) ⊆ N(λt + (1− λ)u, λx + (1− λ)y) . □

Remark 3.15. An interesting theory of regular sequences of ideals has been
developed by Jothilingham, et al. [4]. In this theory, ideals I1, . . . , Iq of A
are said to be a regular sequence of ideals if all of them are nonzero and
proper, and if

(I1 + · · ·+ Ij) ∩ Ij+1 = (I1 + · · ·+ Ij) . Ij+1

for all j = 1, . . . , q − 1. This extends the definition of a regular sequence
of elements of a local ring, in the sense that a sequence (x1), . . . , (xq) of
principal ideals in A is regular if and only if the elements x1, . . . , xq form a
regular sequence.

Although it was very tempting to write this paper using the concept of
regular sequences of ideals, ultimately we decided not to. This was because
many of the results of [4] (e.g., Theorem 1) required A to be a regular local
ring; in addition, there were other difficulties in trying to rewrite the proof
of [1, Lem. 6.2] directly in terms of a regular sequence of ideals.
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4. The Autissier Property of Subschemes

This brief section carries over Definitions 3.9 and 3.12 and Proposi-
tion 3.13 to the case of subschemes.

First we start with the definitions.
Throughout this section, X is a complete variety over a field k and

Y1, . . . , Yq are proper closed subschemes of X.

Definition 4.1. Let I1, . . . , Iq be the ideal sheaves that correspond to
Y1, . . . , Yq, respectively.

(a) We say that Y1, . . . , Yq intersect properly at a point P ∈ X if the
subsequence of proper ideals in the sequence (I1)P , . . . , (Iq)P of
ideals of the local ring OX,P intersect properly (in the sense of
Definition 3.9). (If the subsequence is trivial, i.e., if P /∈

⋃
Yi, then

this is vacuously true.)
(b) We say that Y1, . . . , Yq intersect properly if Y1, . . . , Yq intersect prop-

erly at all points of X.
(c) We say that Y1, . . . , Yq weakly intersect properly if they intersect

properly at all P ∈
⋃

i ̸=j(Yi ∩ Yj).

Clearly, if Y1, . . . , Yq intersect properly, then they also weakly intersect
properly.

Definition 4.2. Let I1, . . . , Iq be as in Definition 4.1.
(a) Let P ∈ X, and let j1, . . . , jr be the subsequence of 1, . . . , q con-

sisting of those j such that P ∈ Yj . We say that Y1, . . . , Yq have the
Autissier property at P if

(4.2.1) J (N ∩N ′) = J (N) ∩J (N ′)

for all saturated subsets N and N ′ of Nr, where J is taken with
respect to the sequence (Ij1)P , . . . , (Ijr )P of (proper) ideals of
OX,P . (This is equivalent to saying that (Ij1)P , . . . , (Ijr )P have
the Autissier property as in Definition 3.12.)

(b) We say that Y1, . . . , Yq have the Autissier property if they have the
Autissier property at all P ∈ X.

Corresponding to Proposition 3.13, we then have the following, which is
Theorem 1.14.

Proposition 4.3. If Y1, . . . , Yq weakly intersect properly, then they have
the Autissier property.

Proof. First, note that if P ∈ X \
⋃

i ̸=j(Yi ∩ Yj); i.e., if P ∈ X lies in
at most one of the Yi, then the Autissier property holds trivially at P ,
because (4.2.1) is trivial when r ≤ 1.
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For all P ∈
⋃

i ̸=j(Yi ∩ Yj), we then have that Y1, . . . , Yq intersect
properly at P ; therefore they have the Autissier property at P by Proposi-
tion 3.13. □

(Of course, if Y1, . . . , Yq intersect properly, then the first paragraph of
the above proof is unnecessary.)

5. Filtrations and Convexity

This section summarizes the core of Autissier’s argument in [1], as
adapted for working with subschemes.

Throughout this section, we fix a complete variety X over a field k and
proper closed subschemes Y1, . . . , Yq of X. Let I1, . . . , Iq be the sheaves of
ideals in OX corresponding to Y1, . . . , Yq, respectively.

We start with some definitions.

Definition 5.1. Let □ and N(t, x) be as in Proposition 3.14.
(a) Let N be a saturated subset of Nq. Then

(5.1.1) JX(N) =
∑
b∈N

I b1
1 · · ·I

bq
q .

This is a coherent ideal sheaf in OX .
(b) For each t ∈ □ and all x ∈ R≥0, let

(5.1.2) JX(t, x) = JX(N(t, x)) =
∑

b∈N(t,x)
I b1

1 · · ·I
bq
q .

(c) Fix a line sheaf L on X, and let t and x be as above. Then we let
(5.1.3) F (t)x = FL (t)x = H0(X, L ⊗JX(t, x)) .

Then (F (t)x)x∈R≥0 is a descending filtration of H0(X, L ) that sat-
isfies F (t)x = 0 for all x≫ 0.

(d) Finally, for all t ∈ □ we let

(5.1.4) F (t) = FL (t) = 1
h0(X, L )

∫ ∞

0

(
dim F (t)x

)
dx .

In terms of this definition, Proposition 3.14 gives the following.

Lemma 5.2. Assume that Y1, . . . , Yq have the Autissier property, and let
L be a line sheaf on X. Let □ and N(t, x) be as in Proposition 3.14. Then
(5.2.1) F (t)x ∩F (u)y ⊆ F (λt + (1− λ)u)λx+(1−λ)y

for all t, u ∈ □, all x, y ∈ R≥0, and all λ ∈ [0, 1].

Proof. Let t, u, x, y, λ be as above. By Proposition 3.14 (applied at all
P ∈ X),
(5.2.2) JX(t, x) ∩JX(u, y) ⊆JX(λt + (1− λ)u, λx + (1− λ)y) .
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This remains true after tensoring with L , and (5.2.1) then follows because
the global section functor is left exact. □

We then have the following concavity theorem of Autissier [1, Thm. 3.6]
(see also [9, Prop. 6.7]).

Theorem 5.3. Let F (t)x (t ∈ □, x ∈ R≥0) and F : □ → R be as in
Definition 5.1. Let β1, . . . , βq ∈ R>0. If (5.2.1) holds, then the inequality

(5.3.1) F (t) ≥ min
1≤i≤q

(
1
βi

∞∑
m=1

h0(X, L ⊗I m
i )

h0(X, L )

)
holds for all t ∈ □ for which

∑
βiti = 1.

Proof. See [9, Prop. 6.7]. □

The results of this section can then be summarized as follows.

Theorem 5.4. If Y1, . . . , Yq have the Autissier property and if β1, . . . , βq ∈
R>0, then (5.3.1) holds.

This provides a slight strengthening of the “General Theorem” of [9]: in
that theorem, the divisors Di were assumed to be Cartier, but this condition
has been relaxed so that they only need to be Cartier at points where they
meet other divisors in the collection.

6. Ideal Sheaves and B-divisors

The remainder of the proof in [9] involves Proposition 4.18 of that paper,
so it is necessary to interpret things such as H0(X, L ⊗ I b1

1 . . . I
bq
q ) in

terms of Cartier b-divisors. This is quite easy, because ideal sheaves are
special cases of b-divisors. That is the topic of this section.

Let X be a variety over a field k. Here X is not necessarily complete. We
briefly recall that a model of X is a proper birational morphism π : W → X
of varieties over k, and a Cartier b-divisor D on X is an equivalence class
of pairs (W, D) = (π : W → X, D), where π : W → X is a model of X and
D is a Cartier divisor on W ; here pairs (W1, D1) and (W2, D2) are said to
be equivalent if there exist a model W3 of X and morphisms fi : W3 →Wi

over X for i = 1, 2 such that f∗
1 D1 = f∗

2 D2. For more details and basic
properties, see [9, §4] and note that [9, Def. 4.1] does not need to assume
that X is complete.

We start with some basic results about spaces of global sections of line
sheaves on projective varieties. The first result is a general result on growth
of cohomology groups, and is essentially due to the Stacks Project [14,
Lem. 0BEM]. This lemma says that the Euler characteristic of the sheaves
F ⊗L n1

1 ⊗ · · · ⊗L nr
r is a numerical polynomial in n1, . . . , nr of a certain

degree. Although the lemma below gives instead a bound on the dimensions
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of the cohomology groups of these sheaves, the method of proof is the same.
These upper bounds will only be needed for h0, but we will prove the general
case as it is no more difficult.

Lemma 6.1. Let X be a proper scheme over a field k, let F be a coherent
sheaf on X, let d = dim Supp F , and let L1, . . . , Lr be line sheaves on X.
Then

hi(X, F ⊗L n1
1 ⊗ · · · ⊗L nr

r ) ≤ O(|n|d + 1)
for all n = (n1, . . . , nr) ∈ Nr and all i, where |n| = n1 + · · · + nr and the
implicit constant depends only on X, k, F , and L1, . . . , Lr.

Proof. We give a sketch of this proof, following the Stacks Project [14],
including all places where the proofs differ.

For typographical simplicity, we let L n denote L n1
1 ⊗ · · · ⊗L nr

r (mul-
tiindex notation) for all n ∈ Nr.

The proof is by induction on d. The base case d = 0 (including also
Supp F = ∅) is trivial.

First, if F contains embedded points, then by [14, Lem. 02OL] there is
a short exact sequence

(6.1.1) 0 −→ K −→ F −→ F ′ −→ 0

of coherent sheaves such that dim Supp K < d and F ′ has no embedded
points. It remains exact after tensoring with L n, so by the long exact
sequence in cohomology and the inductive hypothesis we have∣∣∣hi(X, F ⊗L n)− hi(X, F ′ ⊗L n)

∣∣∣ ≤ O(|n|d−1 + 1) .

Therefore it suffices to prove the lemma when F has no embedded points.
We may replace X with Supp F (this does not change the cohomologies),

so we may assume that dim X = d and that X has no embedded points.
In this situation, by [14, Lemmas 02OZ and 02P2], there exist a coherent
ideal sheaf I on X and short exact sequences

0 −→ I F −→ F −→ Q −→ 0

and
0 −→ I F −→ F ⊗L1 −→ Q′ −→ 0

such that dim Supp Q < d and dim Supp Q′ < d. Again tensoring with L n

and applying the long exact sequence and the inductive hypothesis, we have∣∣∣hi(X, F ⊗L n)− hi(X, I F ⊗L n)
∣∣∣ ≤ O(|n|d−1 + 1)

and ∣∣∣hi(X, F ⊗L n ⊗L1)− hi(X, I F ⊗L n)
∣∣∣ ≤ O(|n|d−1 + 1)



32 Paul Vojta

for all n and all i. Combining these inequalities, and using a symmetrical
argument, we obtain∣∣∣hi(X, F ⊗L n ⊗Lj)− hi(X, F ⊗L n)

∣∣∣ ≤ O(|n|d−1 + 1)

for all n, all i, and all j = 1, . . . , r.
Applying this inequality |n| times then gives∣∣∣hi(X, F ⊗L n)− hi(X, F )

∣∣∣ ≤ O(|n|d + 1) ,

and the result follows. □

The following lemma applies this to give bounds more directly applicable
to the current situation.

Lemma 6.2. Let π : W ′ →W be a proper birational morphism of complete
varieties over a field k.

(a) Assume that W is normal. Then π∗π∗L ∼= L for all line sheaves
L on W , and the natural map H0(W, L ) → H0(W ′, π∗L ) is an
isomorphism.

(b) For general W , the coherent sheaf F = π∗OW ′/OW on W is sup-
ported on a proper subset of W , and

(6.2.1) 0 ≤ h0(W ′, π∗L )− h0(W, L ) ≤ h0(W, F ⊗L )

for all line sheaves L on W .
(c) Let L be a line sheaf on W , let D be a Cartier divisor on W , and

let d = dim W . Then
(6.2.2)

0 ≤ h0(W ′, π∗L N (−mπ∗D))− h0(W, L N (−mD)) ≤ O((N + m)d−1)

for all N ∈ Z>0 and all m ∈ N, where the implicit constant depends
on π, k, L , and D, but not on N or m.

(d) Under the same conditions as (c),
(6.2.3)

0 ≤
∞∑

m=1
h0(W ′, π∗L N (−mπ∗D))−

∞∑
m=1

h0(W, L N (−mD)) ≤ O(Nd) .

Proof. For part (a), we first note that π∗OW ′ = OW (as subsheaves on the
constant sheaves of the function field K(W ′) ∼= K(W )) by Hartshorne [2,
II Prop. 6.3A] and the fact that W is normal. Therefore the projection for-
mula gives π∗π∗L ∼= L , and taking global sections gives H0(W ′, π∗L ) ∼=
H0(W, L ).

For (b), we have an exact sequence

0 −→ OW −→ π∗OW ′ −→ F −→ 0
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of sheaves on W , where F is supported on a proper subset of W . Tensoring
each term with L and taking global sections then gives an exact sequence

(6.2.4) 0 −→ H0(W, L ) −→ H0(W ′, π∗L ) −→ H0(W, F ⊗L ) ,

which gives (6.2.1).
By (b), part (c) is a matter of showing that

h0(W, F ⊗L N (−mD)) ≤ O((N + m)d−1)

for all N and m. This is immediate from Lemma 6.1 with L1 = L and
L2 = O(−D), since dim Supp F ≤ d− 1.

For (d), the lower bound holds (termwise) by the first part of (6.2.2).
For the upper bound, we first note that there is a constant c (independent

of N and m) such that the summands in (6.2.3) vanish for all m > cN .
Indeed, let π′′ : W ′′ → W ′ be a projective model of W that dominates
W ′ and let A be an ample divisor on W ′′; then it suffices to take c ≥
(π′′∗L . Ad−1)/(π′′∗D . Ad−1), where in this case Ad−1 is meant in the sense
of intersection theory.

The sums then have O(N) nonzero terms with m ≤ O(N), so the upper
bound follows from (6.2.2). □

For the remainder of this section, X is a complete variety over a field k.

Definition 6.3. Let L be a line sheaf on X and let D be an effective
Cartier b-divisor on X. Then

H0
bir(X, L (−D)) = H0(W, π∗L (−D)) ,

where π : W → X is any normal model of X on which D is represented by
a Cartier divisor D. This is independent of the choice of W by Lemma 6.2a.

Also (as usual)

h0
bir(X, L (−D)) = dimk H0

bir(X, L (−D)) .

When D = 0, these are also denoted H0
bir(X, L ) and h0

bir(X, L ), respec-
tively.

The subscript “bir” is needed because H0
bir(X, L ) may be larger than

H0(X, L ) if X is not normal.

Lemma 6.4. Let L be a line sheaf on X, let D be a nonzero effective
Cartier divisor on X, and let d = dim X. Then

(6.4.1) h0
bir(X, L N ) = h0(X, L N ) + O(Nd−1)

and

(6.4.2)
∞∑

m=1
h0

bir(X, L N (−mD)) =
∞∑

m=1
h0(X, L N (−mD)) + O(Nd)
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as N → ∞, where the implicit constants depend only on L and D. In
particular, if L is big, then

(6.4.3) β(L , D) = lim inf
N→∞

∑∞
m=1 h0

bir(X, L N (−mD))
Nh0

bir(X, L N )
.

Proof. First of all, by Lemma 6.2(a), h0
bir(X, L N (−mD)) for all N, m ∈ N

can be computed on a fixed normal model W of X, independent of N and
m.

Then (6.4.1) is immediate from Lemma 6.2(c).
For (6.4.2), note that h0

bir(X, L N (−mD)) = h0(W, π∗L N (−mD)) for
any normal model π : W→X. Then (6.4.2) is immediate from Lemma 6.2(d)
applied to any such model π.

Finally, since L is big, (6.4.3) follows easily from (6.4.1) and (6.4.2). □

Therefore we may extend Definition 1.1 as follows.
Definition 6.5. Let L be a big line sheaf on X and let D be a nonzero
effective Cartier b-divisor on X. Then

(6.5.1) β(L , D) = lim inf
N→∞

∑∞
m=1 h0

bir(X, L N (−mD))
Nh0

bir(X, L N )
.

Remark 6.6. As noted in our earlier joint work [9] with M. Ru (following
Def. 1.9), the above lim inf is actually a limit when L is big and D is a
Cartier divisor. A detailed proof is given in Section 7, including the case
when D is a b-divisor.

Now we consider b-divisors associated to proper closed subschemes.
Definition 6.7. Let Y be a proper closed subscheme of X, and let I be
the corresponding ideal sheaf. Let π : W → X be the blow-up of X along
I , and let E be the exceptional divisor of π (so that O(E) = O(−1) for the
blowing-up). Then the Cartier b-divisor Y associated to Y is the b-divisor
represented by E on W .

Next we compare the relevant spaces of global sections.
Lemma 6.8. Let L be a line sheaf on X.

(a) Let Y , I , π : W → X, and E be as in Definition 6.7. Let m ∈ N.
Then the restriction to I m of the natural map OX ↪→ π∗OW gives
a map

(6.8.1) I m ↪→ π∗(OW (−mE)) .

This gives an injection
(6.8.2) H0(X, L ⊗I m) ↪→ H0(W, π∗L (−mE)) .

(b) The map (6.8.2) is an isomorphism for all sufficiently large m, in-
dependent of L .
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(c) For each i = 1, . . . , q let Yi be a proper closed subscheme of X, and
let Yi and Ii be the corresponding Cartier b-divisor and ideal sheaf
on X, respectively. Then, for all n1, . . . , nq ∈ N, there is a canonical
injection

(6.8.3) H0(X, L ⊗I n1
1 · · ·I

nq
q ) ↪→ H0

bir(X, L (−n1Y1 − · · · − nqYq)) ,

induced by the maps of part (a) for all i.

Proof. With notation as in part (a), let U be an open subset of X. Then any
local section s ∈ Γ(U, I ) pulls back to a section of π−1I · OW = O(1) =
O(−E) over π−1(U); see Hartshorne [2, II Prop. 7.13]. This gives (6.8.1).

Tensoring both sides of (6.8.1) with L and applying the projection
formula gives an injection L ⊗ I m ↪→ π∗(π∗L (−mE)), which then
gives (6.8.2).

For part (b), it suffices to show that the map (6.8.1) is surjective (hence
an isomorphism) for all m≫ 0. This map can be written I m → π∗OW (m).
The fact that it is surjective for all m ≫ 0 is noted at the very end of the
proof of [2, II Thm. 5.19]. (This is shown locally over open affines of X,
but extends to all of X by a compactness argument.)

For part (c), let π : W → X be any normal model of X that dominates
the blowings-up of X along Yi for all i. Since L ⊗ I n1

1 · · ·I
nq
q is locally

generated by products of local sections of L and of I n1
1 , . . . , I

nq
q , we

obtain from (6.8.1) an injection

L ⊗I n1
1 · · ·I

nq
q ↪→ π∗(π∗L (−n1E1 − · · · − nqEq)) ,

which gives (6.8.3). □

We conclude this section by proving the assertions of Remarks 1.5 and 1.6.

Corollary 6.9. Let Y be a proper closed subscheme of X and let Y be the
corresponding b-divisor. Let L be a big line sheaf on X. Then:

(a) Recalling Definitions 1.4, 1.5, and 6.5,

(6.9.1) β(L , Y ) = βL ,Y = β(L , Y) .

(b) If any of these three quantities can be computed by evaluating the
corresponding limits, then all of them can.

Proof. Let I , π : W → X, and E be as in Definition 6.7, and let d = dim X.
For all m ∈ Z>0 let Fm be the cokernel of the map (6.8.1); by Lemma 6.8(b)
there is an m0 such that Fm = 0 for all m > m0. Tensoring the short exact
sequence 0 −→ I m −→ π∗OW (−mE) −→ Fm −→ 0 with L N and taking
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global sections then gives

0 ≤
∞∑

m=1
h0(W, π∗L N (−mE))−

∞∑
m=1

h0(X, L N ⊗I m)

≤
m0∑

m=1
h0(X, Fm ⊗L N )

≤ O(Nd−1 + 1)

for all N > 0, by Lemma 6.2(c). This gives
(6.9.2)

lim inf
N→∞

∑∞
m=1 h0(X, L N ⊗I m)

Nh0(X, L N ) = lim inf
N→∞

∑∞
m=1 h0(W, π∗L N (−mE))

Nh0(X, L N ) ,

which is the first equality β(L , Y ) = βL ,Y of (6.9.1).
The second equality βL ,Y = β(L , Y) is a matter of showing that

(6.9.3)

lim inf
N→∞

∑∞
m=1 h0(W, π∗L N (−mE))

Nh0(X, L N ) = lim inf
N→∞

∑∞
m=1 h0

bir(X, L N (−mD))
Nh0

bir(X, L N )

This is true by (6.4.2) and (6.4.1).
Part (b) is immediate from the fact that (6.9.2) and (6.9.3) remain

true (for the same reasons) when all instances of lim inf are replaced by
lim sup. □

7. Proof that (1.1.1), (1.4.1), (1.5.1), and (6.5.1) Exist as Limits

This section gives a proof that the limits infima in the definitions of
β(L , D) (Definition 1.1), β(L , Y ) (Definition 1.4), βL ,Y (Remark 1.5),
and β(L , D) (Definition 6.5) can be replaced by limits.

It has already been noted that the lim inf in the definition of β(L , D)
(Definition 1.1) is a limit when D is a nonzero effective Cartier divisor (see
the discussion following Definition 1.9 in [9]). We extend this result to allow
D to be a nonzero effective Cartier b-divisor. Since a detailed proof has not
appeared before, we include here such a proof of both results. It will then
be immediate from Corollary 6.9(b) that the same is true for β(L , Y ) and
βL ,Y .

Recall that in all cases, L is assumed to be big.
This argument is based on an idea of Julie Wang to compare the limit

to a Riemann sum.
We start with the proof that the limit in (1.1.1) converges (Theorem 7.2).

This first requires a lemma.
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Lemma 7.1. Let M be a line sheaf on X. If the limit

lim
N→∞

1
Nd+1

∑
m≥1

h0(X, L N (−mD))

converges, then so does the limit

lim
N→∞

1
Nd+1

∑
m≥1

h0(X, M ⊗L N (−mD)) ,

and the two limits are equal.

Proof. First, let M1 and M2 be line sheaves on X. Since X is projective,
we have h0(X, M1 ⊗M −1

2 ⊗L p) ̸= 0 for some p ∈ N by a consequence of
Kodaira’s lemma (see Lazarsfeld [6, 2.2.7]). Therefore

h0(X, M2 ⊗L N (−mD)) ≤ h0(X, M1 ⊗L N+p(−mD))
for all m, N ∈ Z>0. Therefore we have

lim inf
N→∞

1
Nd+1

∑
m≥1

h0(X, M2 ⊗L N (−mD))

≤ lim inf
N→∞

1
(N − p)d+1

∑
m≥1

h0(X, M1 ⊗L N (−mD))

= lim inf
N→∞

1
Nd+1

∑
m≥1

h0(X, M1 ⊗L N (−mD)) ,

and likewise for lim sup.
This gives

lim inf
N→∞

1
Nd+1

∑
m≥1

h0(X, L N (−mD))

≤ lim inf
N→∞

1
Nd+1

∑
m≥1

h0(X, M ⊗L N (−mD))

≤ lim sup
N→∞

1
Nd+1

∑
m≥1

h0(X, M ⊗L N (−mD))

≤ lim sup
N→∞

1
Nd+1

∑
m≥1

h0(X, L N (−mD)) ,

and this implies the lemma. □

Theorem 7.2. Let X be a complete variety over a field F of characteristic
zero, let L be a big line sheaf on X, and let D be a nonzero effective Cartier
divisor on X. Then the limit

(7.2.1) lim
N→∞

∑∞
m=1 h0(X, L N (−mD))

Nh0(X, L N )
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converges. In particular, the lim inf in Definition 1.1 can be replaced by a
limit.

Proof. We start by reducing to the projective case. Let d = dim X.
By Chow’s lemma and resolution of singularities there is a model π : W →

X, with W projective and nonsingular. Then
∞∑

m=1
h0(X, L N (−mD)) =

∞∑
m=1

h0(W, π∗(L N (−mD))) + O(Nd)

by Lemma 6.2(d), and

h0(X, L N ) = h0(W, π∗L N ) + O(Nd−1)
by Lemma 6.2(c). Therefore

lim
N→∞

∑∞
m=1 h0(X, L N (−mD))

Nh0(X, L N ) = lim
N→∞

∑∞
m=1 h0(W, π∗(L N (−mD)))

Nh0(W, π∗L N ) ,

in the sense that if one limit converges, then both do, and they are equal.
So assume now that X is projective and nonsingular.
For all line sheaves L on X, all effective Cartier divisors D on X, and

all x ∈ R≥0, we let

H0(X, L (−xD)) = {s ∈ H0(X, L ) : the R-divisor (s)− xD is effective}
and (as usual)

h0(X, L (−xD)) = dimF H0(X, L (−xD)) .

These coincide with the usual definitions whenever xD is an integral divisor.
Define f : R≥0 → R by

f(x) = lim
N→∞

h0(X, L N (−NxD))
Nd

,

where the limit is over N ∈ Z>0.
Recall from Lazarsfeld [6, II, Def. 11.4.2 and Ex. 11.4.7] that

(7.2.2) vol(L ) = lim
N→∞

h0(X, L N )
Nd/d! .

Then f(x) = vol(L (−xD))/d! whenever xD is an integral Cartier divisor.
Since D is effective, f is a nonincreasing function.
We also have f(x) = 0 for all sufficiently large x. Indeed, given an ample

divisor A on X, this is true for all x > (L . Ad−1)/(D . Ad−1). Fix some
R ∈ R≥0 such that H0(X, L N (−NRD)) = 0 for all N > 0 (and therefore
f(R) = 0).

Let
I =

∫ ∞

0
f(x) dx =

∫ R

0
f(x) dx .
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It will then suffice to prove that

(7.2.3) lim
N→∞

1
Nd+1

∑
m≥1

h0(X, L N (−mD)) = I ,

since by (7.2.2) this would imply

lim
N→∞

∑
m≥1 h0(X, L N (−mD))

Nh0(X, L N ) = d!I
vol(L ) .

Let k ∈ Z>0. We show that if

(7.2.4) lim
N→∞

1
Nd+1

∑
m≥1

h0(X, M ⊗L Nk(−mD)) = kd+1I

with M = OX , then (7.2.3) is true. Indeed, if (7.2.4) is true with M = OX ,
then by Lemma 7.1 it is true with M = L j with j = 0, 1, . . . , k − 1.
Therefore the limit in (7.2.3) exists for N in each congruence class modulo
k, and these limits are all equal.

Thus, if (7.2.3) is true with L replaced by L k for some k > 0, then it is
true with the original L . In particular, choosing k such that H0(X, L k) ̸=
0, we may assume that H0(X, L ) ̸= 0.

We then have
(7.2.5) h0(X, L N (−mD)) ≤ h0(X, L N ′(−mD))
for all 0 ≤ N ≤ N ′ and all m ∈ N.

We now begin the main argument of the proof.
Given ϵ > 0, pick ϵ1 > 0 and k, l0 ∈ Z>0 such that

(7.2.6)
(

1 + 1
l0

)d+1 (
I + f(0)

k
+ ϵ1

)
≤ I + ϵ

and (
1− 1

l0

)d+1 (
I − f(0)

k
− ϵ1

)
≥ I − ϵ .

We claim that if k and l0 are chosen sufficiently large, then we also have

(7.2.7) 1
(lk)d

∞∑
m=0

h0(X, L lk(−mlD)) ≤
∞∑

m=0
f

(
m

k

)
+ ϵ1k

and

(7.2.8) 1
(lk)d

∞∑
m=1

h0(X, L lk(−mlD)) ≥
∞∑

m=1
f

(
m

k

)
− ϵ1k

for all l ≥ l0.
We will show this result only for (7.2.7). The argument for (7.2.8) is

similar and is left to the reader.
We may assume that R ∈ Z.
Choose ϵ2 > 0, ϵ3 > 0, and ϵ4 > 0 such that ϵ2 + ϵ3 + ϵ4 ≤ ϵ1.
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Choose x0, . . . , xt ∈ R such that 0 = x0 < x1 < · · · < xt = R and
t∑

i=1
(xi − xi−1)(f(xi−1)− f(xi)) ≤ ϵ2 .

Define a function g : R≥0 → R≥0 by

g(x) = f(xi−1)− f(x) for all x ∈ [xi−1, xi) and all i

and by g(x) = 0 for all x ≥ R. Then g(x) ≤ f(xi−1) − f(xi) for all x ∈
[xi−1, xi) and all i; hence∫ ∞

0
g(x) dx =

∫ R

0
g(x) dx ≤ ϵ2 .

By the theory of Riemann integration, since g is piecewise nondecreasing,
we have

1
k

∞∑
m=0

g

(
m

k

)
≤ ϵ2 + ϵ3

for all sufficiently large k. Fix such a k. Then there is an integer N0, de-
pending on k, such that∣∣∣∣∣h0(X, L N (−Nxi−1D))

Nd
− f(xi−1)

∣∣∣∣∣ ≤ ϵ4
kR

for all 1 ≤ i ≤ t and all N ≥ N0. Therefore

h0(X, L N (−NxD))
Nd

≤ h0(X, L N (−Nxi−1D))
Nd

≤ f(xi−1) + ϵ4
kR

= f(x) + g(x) + ϵ4
kR

for all i, all x ∈ [xi−1, xi], and all N ≥ N0. Let l0 = ⌈N0/k⌉. Then, for all
l ≥ l0,

1
k

∞∑
m=0

h0(X, L lk(−mlD))
(lk)d

− 1
k

∞∑
m=0

f

(
m

k

)

= 1
k

kR−1∑
m=0

h0(X, L lk(−mlD))
(lk)d

− 1
k

kR−1∑
m=0

f

(
m

k

)

≤ 1
k

kR−1∑
m=0

g

(
m

k

)
+ ϵ4

≤ ϵ2 + ϵ3 + ϵ4

≤ ϵ1 .

This concludes the proof of the claim.
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By elementary facts about Riemann sums for monotone functions, we
have

1
k

kR∑
m=1

f

(
m

k

)
≤ I ≤ 1

k

kR−1∑
m=0

f

(
m

k

)
.

Since f(R) = 0 and since the two sums differ by f(0)/k, we have

(7.2.9) 1
k

kR∑
m=0

f

(
m

k

)
≤ I + f(0)

k
and 1

k

kR∑
m=1

f

(
m

k

)
≥ I − f(0)

k
.

Now let any N ≥ l0k be given. Let l =
⌈

N
k

⌉
. Then lk ≥ N and l ≥ l0;

hence

(7.2.10) lk

N
<

N + k

N
≤ 1 + 1

l0
.

By (7.2.5), effectivity of D, (7.2.10), (7.2.7), (7.2.9), and (7.2.6),

1
Nd+1

∑
m≥1

h0(X, L N (−mD))

≤ 1
Nd+1

∑
m≥1

h0(X, L lk(−mD))

≤ 1
Nd+1

∑
m≥0

h0
(

X, L lk
(
−
⌊

m

l

⌋
lD

))

= 1
Nd+1

∞∑
m′=0

lh0(X, L lk(−m′lD))

<

(
1 + 1

l0

)d+1 1
ldkd+1

∞∑
m=0

h0(X, L lk(−mlD))

≤
(

1 + 1
l0

)d+1
(

1
k

∞∑
m=0

f

(
m

k

)
+ ϵ1

)

≤
(

1 + 1
l0

)d+1 (
I + f(0)

k
+ ϵ1

)
≤ I + ϵ .

A similar argument gives

1
Nd+1

∑
m≥1

h0(X, L N (−mD)) > I − ϵ ,

and this implies (7.2.3), concluding the proof of the theorem.
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Corollary 7.3. Let X be a complete variety over a field of characteristic
0, let L be a big line sheaf on X, and let D be a nonzero effective Cartier
b-divisor on X. Then, recalling Definition 6.3, the limit

lim
N→∞

∑∞
m=1 h0

bir(X, L N (−mD))
Nh0

bir(X, L N )
converges. Thus, the lim inf in (6.5.1) is actually a limit.

Proof. Let π : W → X be a normal model of X on which D is represented
by an effective Cartier divisor D. By Lemma 6.2(a), we then have

h0
bir(X, L N (−mD)) = h0(W, π∗L N (−mD))

for all m, N ∈ N (notably including m = 0). Thus∑∞
m=1 h0

bir(X, L N (−mD))
Nh0

bir(X, L N )
=
∑∞

m=1 h0(W, π∗L N (−mD))
Nh0(W, π∗L N )

for all N ∈ Z>0, and the corollary then follows from Theorem 7.2. □

Corollary 7.4. If char k = 0, then the limits infima in (1.4.1) and (1.5.1)
converge as limits.

Proof. This is immediate from Corollaries 7.3 and 6.9(b). □

8. An Inequality of B-divisors

This section continues with the proof of Theorem 1.15, by applying the
method of Autissier [1, §4] as adapted in Ru and the author [9], leading up
to an inequality of R-Cartier b-divisors (Lemma 8.9). This closely follows
the proof in [9, §6], but we simplify it here by eliminating the sets Σ and
△σ (see Remark 8.10).

We start with some notation. Let X be a complete variety over a field k
of characteristic zero, and let Y1, . . . , Yq be proper closed subschemes of X
that have the Autissier property. Let β1, . . . , βq ∈ R>0. Let b and N be large
positive integers, to be chosen later (Corollary 9.12 and Theorem 10.4).

Let
△ = {t ∈ Rq

≥0 : t1 + · · ·+ tq = 1} .

Recalling that b ∈ Z>0, let

△b =
{

a ∈
q∏

i=1
β−1

i N :
∑

βiai = b

}
,

so that b−1△b is a finite discrete subset of △.
Recall from Sections 3 and 5 that □ = Rq

≥0 \ {0} and that

N(t, x) = {b ∈ Nq :
∑

tibi ≥ x} , t ∈ □ , x ∈ R≥0 .
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Let F = FL N : □→ R be the function of Definition 5.1. Write b−1a = a/b
for all a ∈ △b, and recall that

F (a/b) =
∫ ∞

0

dim FL N (a/b)x

h0(X, L N ) dx ,

where (F (a/b))x = (FL N (a/b))x is the filtration of H0(X, L N ) given by

F (a/b)x = H0(X, L N ⊗JX(a/b, x))

and
JX(a/b, x) =

∑
b∈N(a/b,x)

I b1
1 · · ·I

bq
q .

For all a ∈ △b and x ∈ R≥0 let K = K(a/b, x) be the set of minimal
elements in N(a/b, x). Then

(8.1) JX(a/b, x) =
∑
b∈K

I b1
1 · · ·I

bq
q ,

and this is a finite sum since K is a finite set.
Following Ru and the author [9, §6], for all a∈△b and all s∈H0(X, L N )\

{0} we define

(8.2) µa/b(s) = sup{x : F (a/b)x ∋ s} .

Lemma 8.3. Let a ∈ △b and s ∈ H0(X, L N )\{0}. Let µ = µa/b(s). Then

(8.3.1) s ∈ H0

X,
∑

b∈K(a/b,µ)
L N ⊗I b1

1 · · ·I
bq
q

 .

Proof. The union
⋃

x∈[0,µ] K(a/b, x) is finite, and each b in this union occurs
in the sum (8.1) for a closed set of x. Therefore the supremum in (8.2) is
actually a maximum. In particular, s ∈ F (a/b)µ, and this gives (8.3.1). □

Remark 8.4. Since the injection (6.8.3) is not necessarily bijective, it is
important in this section to carefully distinguish between objects defined on
X (non-birational objects) and the birational objects defined in Section 6.
So far in this Section 8, everything has been non-birational. This will now
change.

Corollary 8.5. Let a, s, and µ be as in Lemma 8.3, and let K = K(a/b, s).
Let Y1, . . . , Yq be the b-divisors on X corresponding to Y1, . . . , Yq, respec-
tively. Then

(8.5.1) (s) ≥
∧

b∈K

q∑
i=1

biYi .
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At this point, for the convenience of the reader, we briefly recall the
notation in (8.5.1). For b-divisors D1 and D2 on X, we define a relation
D1 ≥ D2 to hold if there is a model π : W → X on which the pull-back
π∗(D1 − D2) is represented by an effective Cartier divisor. This gives a
partial ordering on the set of all b-Cartier divisors on X. Moreover, this
partial ordering is a lattice; i.e., every nonempty finite set has a least upper
bound and a greatest lower bound (see [9, §4] for details). The symbols

∧
in (8.5.1) and

∨
below denote the greatest lower bound and the least upper

bound of the given b-divisors, respectively (also known as their meet and
join, respectively).

Proof of Corollary 8.5. Let π : W → X be a model of X on which all Yi are
represented by Cartier divisors Di. Then, by (8.3.1), π∗s is a global section
of the subsheaf of π∗L N generated by the set {π∗L N (−b1D1−· · ·−bqDq) :
b ∈ K}. By [9, Prop. 4.18], since this set is finite, we have

(π∗s) ≥
∧

b∈K

(b1D1 + · · ·+ bqDq) .

This gives (8.5.1). □

Definition 8.6. Let F = (Fx)x∈R≥0 be a filtration of a finite dimensional
vector space V , and let B be a basis of V . Then B is adapted to F if
B ∩Fx is a basis of Fx for all x.
Definition 8.7. Let B be a basis of H0(X, L N ). Then

div(B) =
∑
s∈B

(s) .

Remark 8.8. At this point we start using R-Cartier b-divisors. These are
basically finite formal linear combinations of Cartier b-divisors with
real coefficients. An R-Cartier b-divisor is said to be effective if it is a
finite linear combination of effective Cartier b-divisors with positive (real)
coefficients. For more details on R-Cartier divisors and R-Cartier b-divisors,
see [10, §2].
Lemma 8.9. Assume that char k = 0. For each a ∈ △b let Ba be a basis
of H0(X, L N ) adapted to the filtration F (a/b). Then

(8.9.1)
∨

a∈△b

div(Ba) ≥ b

b + q

(
min

1≤i≤q

∞∑
m=1

h0(X, L N ⊗I m
i )

βi

) q∑
i=1

βiYi .

Proof. Let D′ be the left-hand side of (8.9.1), and let π : W → X be a model
of X on which D′ and Y1, . . . , Yq are represented by Cartier divisors D′

and D1, . . . , Dq, respectively. We also assume that W is nonsingular.
Let E be a prime divisor on W . Let ν ′, νa for all a ∈ △b, and ν1, . . . , νq be

the multiplicities of E in D′, div(Ba) for all a, and D1, . . . , Dq, respectively.
Let ν =

∑
βiνi.
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We claim that there is an a ∈ △b (depending on E) such that

(8.9.2) νa ≥
b

b + q
h0(X, L N )F (a/b)ν .

Since div(Ba) is effective for all a (and △b is nonempty), the claim is
trivial if ν = 0, so we assume that ν > 0.

Let
(8.9.3) ti = νi

ν
, i = 1, . . . , q .

Since
∑

βiνi = ν, we have
∑

βiti = 1 and therefore b ≤
∑
⌊(b + q)βiti⌋ ≤

b + q. Therefore we may choose a ∈ △b such that
(8.9.4) ai ≤ (b + q)ti , i = 1, . . . , q .

Let s ∈ Ba, and let νs be the multiplicity of E in the divisor (π∗s).
Let K = K(a/b, µa/b(s)). By (8.5.1), (8.9.3), (8.9.4), and the fact that∑

aibi ≥ bµa/b(s) for all b ∈ K ⊆ N(a/b, µa/b(s)),

(8.9.5) νs

ν
≥ 1

ν
min
b∈K

q∑
i=1

biνi = min
b∈K

q∑
i=1

biti ≥ min
b∈K

q∑
i=1

aibi

b + q
≥ b

b + q
µa/b(s) .

Since Ba is adapted to the filtration F (a/b), we have

h0(X, L N )F (a/b) =
∫ ∞

0
dim F (a/b)x dx =

∑
s∈Ba

µa/b(s)

(see [9, Rem. 6.6]). Combining this with (8.9.5) and the fact that νa =∑
s∈Ba νs then gives (8.9.2).
Since Y1, . . . , Yn have the Autissier property, Theorem 5.4 gives

h0(X, L N )F (a/b) ≥ min
1≤i≤q

∞∑
m=1

h0(X, L ⊗I m
i )

βi
.

Therefore, by (8.9.2) and the definition of ν, we have

ν ′ ≥ b

b + q

(
min

1≤i≤q

∞∑
m=1

h0(X, L N ⊗I m
i )

βi

) q∑
i=1

βiνi .

We conclude that the difference of the two sides of (8.9.1) is represented
on W by a finite sum of effective Cartier divisors with nonnegative real
coefficients (these divisors are the finitely many prime divisors E occur-
ring in Supp D′, and they are Cartier because W is nonsingular). This
proves (8.9.1). □

Remark 8.10. As noted in the introductory paragraph of this section, we
have simplified the argument somewhat by eliminating the dependence on
subsets σ ⊆ {1, . . . , q}. It would be easy to put this dependence back (by
Remark 3.10 it is still true that at most dim X of the Yi can pass through
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any point of X). With this change, the fraction b/(b + q) in Lemma 8.9 can
be replaced by b/(b + dim X), as in [9].

9. A Birational Growth Condition for B-divisors

This section formulates a definition of µ-b-growth. This is the same as [10,
Def. 3.1], except that the divisor is an R-Cartier b-divisor instead of an R-
Cartier divisor. See also [9, Def. 4.12].

Most of this section discusses in more detail the structure of the group of
R-Cartier b-divisors. We then restate Lemma 8.9 in terms of µ-b-growth.
Definition 9.1. Let X be a complete variety, let D be an effective R-
Cartier b-divisor on X, let L be a line sheaf on X, let V be a linear
subspace of H0(X, L ) with dim V > 1, and let µ > 0 be a real number.
We say that D has µ-b-growth with respect to V and L if there is a model
ϕ : W → X of X such that D is represented by an R-Cartier divisor D on
W and such that for all Q ∈W there is a basis B of V such that
(9.1.1) ϕ∗ div(B) ≥ µD

in a Zariski-open neighborhood U of Q, relative to the cone of effective
R-Cartier divisors on U .

At this point, we will take the opportunity to provide a cleaner treat-
ment of R-Cartier (b-)divisors. As was noted in [10, §2.2], the group of
R-Cartier b-divisors on a variety X is usually not a lattice-ordered group.
This difficulty was handled by working with b-Weil functions at times (for
example, in [10, Prop. 2.2]).

Instead, we provide here an explicit embedding of this group of divisors
into a lattice-ordered group.

Let X be a variety over a field k. We recall some definitions and notation
from [10]. Let X denote the Zariski–Riemann space

X = lim←−
π

Xπ

of X, where the projective limit is over all models π : Xπ → X of X. Also,
CDiv(X) and

CDiv(X) = lim−→
π

CDiv(Xπ)

denote the groups of Cartier divisors on X and on X, respectively, and
CDivR(X) = CDiv(X) ⊗ R denotes the group of R-Cartier divisors on X.
Then an R-Cartier b-divisor on X is an element of the group

CDivR(X) := CDiv(X)⊗ R
∼= lim−→

π

CDivR(Xπ) .

An R-Cartier b-divisor on X is effective if it comes from an effective R-
Cartier divisor on some model Xπ.
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Lemma 9.2. Let X be a variety over a field k of characteristic zero.
(a) For any given R-Cartier b-divisors D1, . . . , Dn on X, there is a

model π : Xπ → X of X such that, for all i, Di is represented by
an R-Cartier divisor Di on Xπ, and all irreducible components of
Supp Di are Cartier divisors.

(b) Let D be an R-Cartier b-divisor on X, and let π : Xπ → X be a
model for which the conclusion of part (a) is true. Write π∗D =∑

i ciDi, where the Di are distinct Cartier divisors on Xπ, and are
prime as Weil divisors. Then D is effective if and only if ci ≥ 0 for
all i.

Proof. (a). For each i let Xi be a model of X on which Di is represented
by an R-Cartier divisor, and let π : Xπ → X be a model that dominates all
of the Xi We may assume that Xπ is nonsingular (since char k = 0). Then
Xπ satisfies the conditions.

(b). Let π : Xπ → X, (ci), and (Di) be as above, and assume that D is
effective. By Remark 8.8 and [9, Def. 4.1d], the latter means that there are
(integral) Cartier b-divisors E1, . . . , Em on X and positive real numbers
e1, . . . , em such that D =

∑
ejEj , and moreover that for each j = 1, . . . , m

there is a model πj : Xj → X such that π∗
j Ej is an effective Cartier divisor

on Xj .
Let σ : Xσ → X be a model that dominates X1, . . . , Xm and Xπ, and

such that Xσ is nonsingular. Then σ∗Ej is an effective Cartier divisor on
Xσ for all j, and also, letting τ : Xσ → Xπ be the (unique) morphism over
X, σ∗D =

∑
i ciτ

∗Di. For each i let D̃i be the strict transform of Di in Xτ ;
this also has multiplicity ci in σ∗D. But also σ∗D =

∑
j ejσ∗Ej , and σ∗Ej

is an effective Cartier divisor on Xτ . Therefore, for all i, the multiplicity of
D̃i in σ∗Ej is nonnegative for all j, so ci ≥ 0.

Conversely, if ci ≥ 0 for all i, then D is effective because each prime
divisor Di (as above) defines an effective Cartier b-divisor Di on X, and
we then have that D =

∑
ciDi satisfies the condition in Remark 8.8. □

Now we are ready to define the embedding of CDivR(X).

Definition 9.3. Let X be a variety over a field k of characteristic zero,
and let X be its Zariski–Riemann space.

(a) Let RX be the set of all functions X → R (as is standard). This
is a group under pointwise addition of functions, and is partially
ordered by the relation f ≥ g if f(x) ≥ g(x) for all x ∈ X. This is
then a lattice-ordered group (in which, for example, the join of two
functions is their pointwise maximum).

(b) We define a map Φ: CDivR(X) → RX as follows. Let D be an R-
Cartier b-divisor on X, and let π : Xπ → X be a model on which
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D is represented by an R-Cartier divisor D. Let x ∈ X. This point
is represented by a prime Weil divisor on some model of X, and
we choose some model Xx that dominates both Xπ and this model.
Then D pulls back to an R-Cartier divisor Dx on Xx, and x is
represented by a prime divisor Ex on Xx. We then define ordx D
to be the (real) multiplicity of Ex in Dx. This is independent of
the choices of the various models. We then define Φ(D) to be the
function x 7→ ordx D. This is clearly a group homomorphism.

Proposition 9.4. Let X, k, X, and Φ: CDivR(X) → RX be as in Defini-
tion 9.3. Then Φ preserves the orderings; in other words, Φ(D1) ≥ Φ(D2)
if and only if D1 ≥ D2. In particular, Φ is injective.

Proof. For the first assertion, we may assume that D2 = 0, so it suffices to
show that an R-Cartier b-divisor D is effective if and only if ordx D ≥ 0
for all x ∈ X. The forward implication is immediate. The converse holds by
Lemma 9.2(b).

The second assertion then follows because if Φ(D) = 0 then both D and
−D are effective, so D = 0 by Lemma 9.2(b) (where one assumes that Xπ

is nonsingular). □

From now on, we regard CDivR(X) as a subgroup of RX (via Φ).

Lemma 9.5. Let D be an effective R-Cartier b-divisor on X, and let
π : Xπ → X be a model of X that satisfies the condition of Lemma 9.2(a)
for D. For all f ∈ RX, let Supp f denote {x ∈ X : f(x) ̸= 0} (as is
standard in analysis). Finally, let ϕ : X→ Xπ be the canonical map. Then
Supp Φ(D) = ϕ−1(Supp π∗D).

Proof. Write π∗D =
∑

ciDi as in Lemma 9.2(b). We may assume that
ci > 0 for all i.

Since D is effective, ordx D ≥ 0 for all x ∈ X, and likewise ordx Di ≥ 0 for
all x ∈ X and all i. Therefore Supp Φ(D) =

⋃
i Supp Φ(Di). Since we also

have Supp(
∑

ciDi) =
⋃

Supp Di, it suffices to show that Supp Φ(Di) =
ϕ−1(Supp Di); in other words, that ordx Di > 0 if and only if ϕ(x) ∈
Supp Di. This is trivial, because if U is an open neighborhood of ϕ(x) in Xπ

on which Di is represented by a principal divisor (f), then both conditions
are equivalent to f(ϕ(x)) = 0. □

We also will need to know that Φ preserves the meet and join operations
(when they are defined). (This will also provide a more complete proof of
the assertion in [10, §2.2] that the group of R-Cartier b-divisors is generally
not lattice-ordered. See Remark 9.8.)
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Definition 9.6. Let p > 0 and let D1, . . . , Dp be R-Cartier b-divisors on
X. Then we define

(9.6.1)
p∧

i=1
Di = glb{D1, . . . , Dp}

if the indicated greatest lower bound exists. Otherwise it is undefined. Note
that, for example, D1 ∧D2 ∧D3 may exist even if D1 ∧D2 does not. We
also define

∨p
i=1 Di similarly (as a least upper bound).

Lemma 9.7. Let X be a variety over a field k of characteristic zero.
(a) Let E1, . . . , Ep be effective R-Cartier b-divisors on X such that

p∧
i=1

Ei = 0 .

Then
⋂

Supp Φ(Ei) = ∅ and Φ(E1) ∧ · · · ∧ Φ(Ep) = 0.
(b) Let D1, . . . , Dp be R-Cartier b-divisors on X, and assume that

p∨
i=1

Di = b ∈ CDivR(X) .

Then

(9.7.1) Φ(b) =
p∨

i=1
Φ(Di) .

(c) If D1, . . . , Dp are Q-Cartier b-divisors on X, then

(9.7.2) Φ
( p∨

i=1
Di

)
=

p∨
i=1

Φ(Di) .

Proof. (a). Let E1, . . . , Ep be as given, and assume by way of contradiction
that

⋂
Supp Φ(Ei) is nonempty. Pick x ∈

⋂
Supp Φ(Ei), and let π : W → X

be a model of X satisfying the conclusion of Lemma 9.2(a). By passing to
a larger model, we may assume that x corresponds to the support of a
prime divisor G on W . (This can be done, for example, by starting with
a model W0 as in Lemma 9.2(a), blowing up the closure of the image of
x in W0, and desingularizing the blowup.) For all i let Fi be an R-Cartier
divisor on W corresponding to π∗Ei. Since x ∈ Supp Φ(Ei) for all i, we have
ordx(Ei) > 0 for all i. Let c > 0 be the minimum such order. Then Fi− cG
is effective for all i, so the R-Cartier b-divisor D on X corresponding to cG
is effective, is nonzero, and satisfies Ei −D ≥ 0 for all i. This contradicts
the assumption that glb{E1, . . . , Ep} = 0; thus

⋂
Supp Φ(Ei) = ∅.

For the second assertion, the functions Φ(Ei) are nonnegative real-valued
functions whose supports have no point in common; therefore their point-
wise minimum is zero.
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(b). By part (a),
∧

Φ(b−Di) = 0, and this implies (9.7.1).

(c). This is immediate from (b), since the group of Q-Cartier b-divisors on
X is lattice-ordered. □

Remark 9.8. As noted earlier, Lemma 9.7(b) supports a more complete
proof of the assertion at the end of [10, §2.2] that the group of R-Cartier
b-divisors is not always lattice-ordered. Indeed, following [10], let L1 and
L2 be two distinct lines on X := P2, let α, β ∈ R>0 be real numbers with
α/β irrational, and let D1 = αL1 and D2 = βL2. Assume that D1 ∨ D2
exists as an R-Cartier b-divisor b. Then b −D1 and b −D2 are effective
R-Cartier b-divisors on X such that (b−D1) ∧ (b−D2) = 0.

Let π : W → X be a nonsingular model that satisfies the conclusion
of Lemma 9.2(a) for b, b − D1, and b − D2. Then b is represented by
a Cartier divisor B on W , and by Lemmas 9.2(b), 9.7(a), and 9.5, B −
π∗D1 and B − π∗D2 are effective R-Cartier divisors on W with disjoint
supports. One can then construct, using Hartshorne [2, V 5.3], arbitrarily
long sequences of monoidal transformations over X such that π factors
through their composition, contradicting [2, V 5.4]. The details are left to
the reader.

Remark 9.9. The following facts are also not hard to see. They are not
specifically needed for any proofs in this paper, hence are not proved here,
but can be helpful for intuition.

(a) An R-Cartier b-divisor D is a Q-Cartier b-divisor (resp. a Cartier
b-divisor) if and only if Φ(D) ∈ QX (resp. Φ(D) ∈ ZX).

(b) Let D1, . . . , Dp, b be R-Cartier b-divisors. If
∨

Φ(Di) = Φ(b), then∨
Di = b.

Lemma 9.10. Let X be a variety over a field k of characteristic zero, let
Di (i ∈ I) be R-Cartier divisors on X, and let D be an R-Cartier b-divisor
on X. Assume that

∨
i∈J Di exists (as an R-Cartier b-divisor on X) for all

nonempty finite J ⊆ I. Then the following conditions are equivalent.
(i) There is a model π : W → X of X such that for all Q ∈ W there

exist an element i ∈ I and a Zariski-open neighborhood U of Q in
W such that

(9.10.1)
(
π∗Di

)∣∣
U
≥ D

∣∣
U

,

relative to the cone of effective R-Cartier b-divisors on U .
(ii) There is a finite list i1, . . . , in of indices in I such that

(9.10.2)
n∨

j=1
Dij ≥ D .
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Proof. By replacing X with a suitable model of X, we may assume that D
is an R-Cartier divisor D on X. Then, by replacing Di with Di −D for all
i, we may assume that D = 0.

(i)⇒ (ii). Let π : W → X be as in (i). As Q varies over all points of W ,
the corresponding open sets UQ as in (i) cover W , so by quasi-compactness
there are finitely many points Q1, . . . , Qn such that UQ1 , . . . , UQn cover W .
For each j = 1, . . . , n, let ij ∈ I be an index such that the restriction of
π∗Dij to UQj is effective. Therefore ordx Dij ≥ 0 for all x ∈ X lying over
UQj . Since the join operation corresponds to taking the pointwise maximum
of elements of RX (by Lemma 9.7(b)), and since the UQj cover W , it follows
that ordx

∨n
j=1 Dij ≥ 0 for all x ∈ X. Therefore

∨n
j=1 Dij is effective.

(ii)⇒ (i). Assume that i1, . . . , in ∈ I satisfy condition (ii). For simplicity
of notation, write Dj in place of Dij for all j = 1, . . . , n.

Let E = D1 ∨ · · · ∨Dn. Then E−Dj is an effective R-Cartier b-divisor
for all j, and

∧n
j=1(E−Dj) = 0. By Lemma 9.7(a),

⋂
j Supp Φ(E−Dj) = ∅.

Also E is effective, because E ≥ D = 0.
Now let π : W → X be a model of X that satisfies the condition of

Lemma 9.7(a) for E − Dj for all j. Then π∗(E − Dj) is an effective R-
Cartier divisor on W for all j, and by Lemma 9.5,

⋂
j Supp π∗(E−Dj) = ∅.

For all j, let Uj = W \ Supp π∗(E −Dj); then
⋃

Uj = W and (π∗(E −
Dj))

∣∣
Uj

= 0. Therefore condition (i) is satisfied. Indeed, given any Q ∈W ,
pick j such that Q ∈ Uj and let U = Uj . Then (π∗Dj)

∣∣
U

= (π∗E)
∣∣
U

is
effective because E is effective. □

Everything so far in this section has been leading up to the following
result.

Proposition 9.11. Let X, D, L , V , and µ be as in Definition 9.1. Then
D has µ-b-growth with respect to V and L if and only if there is a finite
list B1, . . . , Bℓ of bases of V such that

(9.11.1)
ℓ∨

i=1
div(Bi) ≥ µD .

Proof. This is immediate from Lemma 9.10 (applied to div(B) for all bases
B of V ). □

Corollary 9.12. Let k be a field of characteristic zero, let X be a complete
variety over k, let L be a big line sheaf on X, and let Y1, . . . , Yq be proper
closed subschemes of X that have the Autissier property. For each i =
1, . . . , q let Yi be the Cartier b-divisor on X corresponding to Yi, and let
Ii be the ideal sheaf corresponding to Yi. Let β1, . . . , βq ∈ R>0, and let D
be the effective R-Cartier b-divisor β1Y1 + · · · + βqYq. Let b ∈ Z>0 and
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N ∈ Z>0, and assume that N satisfies H0(X, L N ⊗Ii) ̸= 0 for all i and
h0(X, L N ) > 1. Let

(9.12.1) µ =
(

b

b + q

)
min

1≤i≤q

∞∑
m=1

h0(X, L N ⊗I m
i )

Nβi
.

Then ND has µ-b-growth with respect to H0(X, L N ) and L N .
Furthermore, if βi = β(L , Yi) for all i, then for all ϵ > 0 there exist b0

and N0 such that µ satisfies

(9.12.2) h0(X, L N )
µ

< 1 + ϵ

whenever b ≥ b0 and N ≥ N0.

Proof. By Lemma 8.9, there exists a finite collection of bases of H0(X, L N )
that satisfy (9.11.1) (with µ as in (9.12.1) and D replaced by ND). This
gives the first assertion.

Next, by (9.12.1),

(9.12.3) h0(X, L N )
µ

= b + q

b

(
min

1≤i≤q

1
βi

∞∑
m=1

h0(X, L N ⊗I m
i )

Nh0(X, L N )

)−1

.

By the assumption on the βi, (1.4.1), Corollary 7.4, and the fact that
H0(X, L N ) ̸= 0 for all N ≫ 0 (see Lazarsfeld [6, II, Ex. 11.4.7]), the
right-hand side of (9.12.3) is arbitrarily close to 1 for all sufficiently large
b and N . This gives the second assertion. □

10. A Birational Multidivisor Nevanlinna Constant for
B-divisors

In this section we introduce the birational Nevanlinna constant of Ru and
the author [9], modified (i) to use R-Cartier b-divisors, and (ii) to allow for
multiple divisors (as in [10, §4.1]).

Throughout this section, X is a complete variety over a field of charac-
teristic zero.

The following definition is essentially [10, Def. 4.1a], except that
D1, . . . , Dp are allowed to be R-Cartier b-divisors instead of R-Cartier di-
visors.

Definition 10.1. Let D1, . . . , Dp (p > 0) be effective R-Cartier b-divisors
on X, and let L be a line sheaf on X. Then we define the birational
multidivisor Nevanlinna constant for L and D1, . . . , Dp as

(10.1.1) Nevbir(L , D1, . . . , Dp) = inf
N,V,µ

dim V

µ
,

where the infimum passes over all triples (N, V, µ) such that N ∈ Z>0, V is
a linear subspace of H0(X, L N ) with dim V > 1, and µ ∈ R>0, such that
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NDi has µ-b-growth with respect to V and L N for all i. Here, as usual,
we use the convention that the infimum of the empty set is +∞.

Note that one can use the either the condition of Definition 9.1 or the
condition of Proposition 9.11 to check µ-b-growth.

Remark 10.2. The above definition requires that V be independent of i.
This is because the proof of Theorem 12.1 ultimately relies on a map from
X to projective space defined using V , and this map cannot depend on i.

Remark 10.3. One could make Definition 10.1 “fully birational” by allowing
L to be a b-line-sheaf, where a b-line-sheaf could be defined as an element
of lim−→Pic W , taking the direct limit over all models W of X. However, this
would basically amount to replacing X with some model W on which the
hypothetical b-line-sheaf lies in Pic W , so nothing new would be added.

Theorem 10.4. Let L be a big line sheaf on X. Let p > 0, and for
each i = 1, . . . , p let Yi,1, . . . , Yi,qi be proper closed subschemes of X that
have the Autissier property; let βij = β(L , Yij) for all j = 1, . . . , qi; let
Yij be the Cartier b-divisor on X corresponding to Yij for all j; and let
Di = βi1Yi1 + · · ·+ βi,qiYi,qi. Then
(10.4.1) Nevbir(L , D1, . . . , Dp) ≤ 1 .

Proof. Let ϵ > 0. For each i = 1, . . . , p, each b > 0, and each N > 0 satis-
fying the hypotheses of Corollary 9.12, let µi,b,N be as defined by (9.12.1)
with Yj equal to Yi,j and βj = βij for all j = 1, . . . , qi. Then NDi has µi,b,N -
b-growth with respect to H0(X, L N ) and L N . Moreover, under the con-
ditions of (9.12.2), for each i there are integers bi and Ni such that (9.12.2)
holds with µ replaced by µi,b,N for all b ≥ bi and all N ≥ Ni. Fix b and N
such that b ≥ bi and N ≥ Ni for all i, and let µ = mini µi,b,N . Then NDi

has µ-b-growth with respect to H0(X, L N ) and L N for all i, and
h0(X, L N )

µ
< 1 + ϵ .

Then Nevbir(L , D1, . . . , Dp) ≤ 1+ ϵ. Letting ϵ→ 0 then gives (10.4.1). □

The following result will be used in Section 12.

Proposition 10.5. Let D1, . . . , Dp and L be as in Definition 10.1. Then
(a) The equation (10.1.1) remains true if the infimum instead passes

over all triples (N, V, µ) such that N ∈ Z>0, V is a linear subspace
of H0(X, L N ) with dim V > 1, µ ∈ R>0, and there is a finite list
B1, . . . , Bℓ of bases of V such that

(10.5.1)
ℓ∨

j=1
div(Bj) ≥ µNDi for all i .
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(b) Let Φ: CDivR(X) → RX be as in Definition 9.3. Then part (a)
remains true when (10.5.1) is replaced by

(10.5.2)
ℓ∨

j=1
Φ(div(Bj)) ≥ µN

p∨
i=1

Φ(Di) .

(c) If D1, . . . , Dp are Q-Cartier b-divisors, then
∨p

i=1 Di exists as a
Q-Cartier b-divisor, and

(10.5.3) Nevbir(L , D1, . . . , Dp) = Nevbir

(
L ,

p∨
i=1

Di

)
.

Proof. (a). Let N ∈ Z>0, let V be a linear subspace of H0(X, L N ) with
dim V > 1, and let µ ∈ R>0. By Proposition 9.11, the condition on (N, V, µ)
in Definition 10.1 is equivalent to the condition that, for each i, there is a
finite list Bi,1, . . . , Bi,ℓi

of bases of V such that
ℓi∨

j=1
div(Bi,j) ≥ µNDi .

Without loss of generality, we may assume that the list of bases is indepen-
dent of i, say B1, . . . , Bℓ. This gives (10.5.1).

(b). By Proposition 9.4, R-linearity of Φ, (9.7.2), and the definition of least
upper bound, (10.5.2) is equivalent to (10.5.1).

(c). Since the group of Q-Cartier b-divisors on X is lattice-ordered, (9.7.2)
applies to both sides of (10.5.2), and then by Proposition 9.4, (10.5.2) is
equivalent to

ℓ∨
i=1

div(Bi) ≥ µN
p∨

i=1
Di .

This is the condition on (N, V, µ) for the p = 1 case of Definition 10.1 (with
the divisor equal to

∨p
i=1 Di). This gives (10.5.3). □

Remark 10.6. It is easy to check that, if D1, . . . , Dp and L are as in Defi-
nition 10.1, and if c ∈ R>0, then

Nevbir(L , cD1, . . . , cDp) = c Nevbir(L , D1, . . . , Dp) .

(This extends [9, Rem. 1.8].)

11. Multidivisor Proximity Functions for B-divisors

As was done in the previous section for Nevanlinna constants, we need
to extend the definition of multidivisor proximity functions to b-divisors.

Throughout this section, k is either a number field or the field C of com-
plex numbers, and X is a complete variety over k.
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We start by introducing Weil functions, and the resulting proximity and
counting functions, for R-Cartier b-divisors D.

Recall that, classically, a Weil function for a Cartier divisor D on X is a
continuous function λ : U(M)→ R that satisfies certain growth conditions
near Supp D. Here U(M) means U(C) if k = C and

∐
v∈Mk

U(Cv) if k is a
number field, where Mk is the set of places of k and Cv is the completion
of the algebraic closure of the completion kv of k at v. Also, U equals
X \Supp D. For simplicity of exposition, if k = C then we let Mk be the set
consisting of the single place v of C corresponding to the classical absolute
value on C, and Cv = C.

For more information on the growth conditions mentioned above, as
well as basic properties of Weil functions, see [9, §2.3], Lang [5, Ch. 10],
or [16, §8].

Weil functions are extended to the group of R-Cartier divisors on X
by R-linearity. (When adding Weil functions, we take the sum over the
intersection of their domains, then extend uniquely to a larger domain by
continuity if necessary.)

We then define Weil functions for R-Cartier b-divisors as follows.

Definition 11.1. Let D be an R-Cartier b-divisor on X. We define Supp D
to be the closure of the image of Supp Φ(D) under the map X → X (see
Definition 9.3(b) and Lemma 9.5 for definitions). Let U = X \ Supp D.
Then a Weil function for D is a continuous function λ : U(M) → R such
that there is a model π : W → X that satisfies the following property.
The pull-back π∗D is an R-Cartier divisor D on W , and there is a Weil
function λ′ : V (M)→ R for D, where V = W \ Supp D, such that there is
a nonempty open V ′ ⊆ V such that λ′(w) = λ(π(w)) for all w ∈ V ′(M).

Let Y be a proper closed subscheme of X and let Y be the corresponding
b-divisor on X, represented by the exceptional divisor E on the blowing-up
π : W → X of X along Y (as in Definition 6.7). Then we can use this W as
the model in Definition 11.1, and can use U = X\Y . Therefore the resulting
Weil function coincides with the Weil function as defined by Silverman [13]
or Yamanoi [18] (up to an M -bounded function, as usual).

If D is an R-Cartier b-divisor on X, then we can define a proximity
function for D in the obvious way. We leave out the details here because
this is the special case p = 1 of the following definition of multidivisor
proximity functions.

Definition 11.2. Let D1, . . . , Dp (p > 0) be effective R-Cartier b-divisors
on X, and let λD1 , . . . , λDp be Weil functions for D1, . . . , Dp, respectively.
Let U be a nonempty open subset of X which is disjoint from Supp Di for
all i, and such that for each i there is a model π : W → X for X such that
π−1(Di) is an R-Cartier divisor on W and π is an isomorphism over U .



56 Paul Vojta

(a) Assume that k is a number field, and let S be a finite set of places
of k. Then the multidivisor proximity function for D1, . . . , Dp is

(11.2.1) mS(D1, . . . , Dp, x) = 1
[k : Q]

∑
v∈S

max
1≤i≤p

λDi,v(x)

for all x ∈ U(k). This proximity function depends on the choices
of the Weil functions, but the dependence is only up to O(1). (One
can also extend this definition to handle algebraic points x ∈ U(k).)

(b) Assume that k = C, and let f : C → X be a holomorphic function
whose image meets U . Then the multidivisor proximity function for
D1, . . . , Dp and f is

(11.2.2) mf (D1, . . . , Dp, r) =
∫ 2π

0
max
1≤i≤p

λDi(f(re
√

−1θ))dθ

2π

for all r > 0.

Remark 11.3. Let L and Yi,j (i = 1, . . . , p; j = 1, . . . , qi) be as in the
statement of Theorem 1.9. For each i and j let Yi,j be the Cartier b-divisor
corresponding to Yi,j , and for each i let Di =

∑qi
j=1 β(L , Yi,j)Yi,j . Then

the left-hand sides of (1.9.1) and (1.9.2) equal the multidivisor proximity
functions mS(D1, . . . , Dp, x) and mf (D1, . . . , Dp, r), respectively.

The following proposition is analogous to Proposition 10.5, and will also
be used in Section 12.

Proposition 11.4. Let D1, . . . , Dp be effective Q-Cartier divisors on X.
(a) Let S be as in Definition 11.2(a). Then

mS(D1, . . . , Dp, x) = mS (
∨p

i=1 Di, x) + O(1)

for all x as in Definition 11.2(a).
(b) Let f be as in Definition 11.2(b). Then

mf (D1, . . . , Dp, r) = mf (
∨p

i=1 Di, r) + O(1)

for all r > 0.

Proof. In both cases this follows from the fact that if λDi is a Weil func-
tion for Di for all i, then max1≤i≤p λDi is a Weil function for

∨p
i=1 Di [9,

Prop. 4.10c]. □

Remark 11.5. Although it may be possible to extend this result to R-Cartier
b-divisors, that would likely require extending the definition of Weil func-
tion to RX (or at least a sufficiently large subgroup of it). This does not
seem to be easy.
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12. Conclusion of the Main Proof

This section gives the last step of the proof of Theorems 1.15 and 1.9. This
relies on the following theorem, which generalizes [9, Thms. 1.4 and 1.5] (the
case in which p = 1 and D1 is an effective Cartier divisor), as well as [10,
Thms. 4.4 and 4.7] (in which D1, . . . , Dp are effective R-Cartier divisors).
It corresponds to the penultimate step in the proof of the Main Theorem
of [9].

(This theorem may be regarded as the Second Main Theorem for bira-
tional multidivisor Nevanlinna constants.)

Theorem 12.1. Let X be a complete variety over a field k, let L be a
line sheaf on X with h0(X, L N ) > 1 for some N > 0, and let D1, . . . , Dp

(p > 0) be effective R-Cartier b-divisors on X.
(a) (Arithmetic part) Assume that k is a number field, and let S be a

finite set of places of k. Then, for all ϵ > 0 and all C ∈ R, there is
a proper Zariski-closed subset Z of X such that the inequality

(12.1.1) mS(D1, . . . , Dp, x) ≤ (Nevbir(L , D1, . . . , Dp) + ϵ)hL (x) + C

holds for all points x ∈ X(k) \ Z.
(b) (Analytic part) Assume that k = C. Then, for all ϵ > 0, there is a

proper Zariski-closed subset Z of X such that the inequality

(12.1.2) mf (D1, . . . , Dp, r) ≤exc (Nevbir(L , D1, . . . , Dp) + ϵ)Tf,L (r)

holds for all holomorphic mappings f : C → X whose image is not
contained in Z.

Proof. We will prove only the arithmetic case. The analytic case is similar.
This proof closely follows the proof of [10, Thm. 4.4], which in turn

follows Ru [8], as summarized at the end of [9, §5].
Fix ϵ > 0 and ϵ′ ∈ (0, ϵ).
By Definition 10.1 and Proposition 10.5(a), there exist a triple (N, V, µ)

and a finite list B1, . . . , Bℓ such that N ∈ Z>0, V is a linear subspace of
H0(X, L N ) with dim V > 1, µ ∈ R>0, Bj is a basis of V for all j,

(12.1.3)
ℓ∨

j=1
div(Bj) ≥ µNDi for all i ,

and

(12.1.4) dim V

µ
≤ Nevbir(L , D1, . . . , Dp) + ϵ′ .

Choose a sufficiently large model π : W → X such that D :=
π∗(∨ℓ

j=1 div(Bj)
)

is a Cartier divisor on W and Di := π∗(Di) is an R-
Cartier divisor on W for all i. Choose Weil functions λBj

for π∗ div(Bj) for
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all j and λDi for Di for all i. By (12.1.3) and standard properties of Weil
functions, for all v ∈ S and all i = 1, . . . , p there is a constant cv,i such that

(12.1.5) max
1≤j≤ℓ

λBj ,v(w) ≥ µλDi,v(w)− cv,i

for all w ∈W (k) outside of a proper Zariski-closed subset. After adjusting
the λDi for all i, we may assume that cv,i = 0 for all v and i.

As is the case for Weil functions (see Definition 11.1), we have

(12.1.6) mS(D1, . . . , Dp, x) = mS(D1, . . . , Dp, π−1(x))

where we consider only x ∈ U with U as in Definition 11.1. We also assume
that the Weil functions used for computing the two proximity functions are
related as in Definition 11.1.

We then claim that, if ϵ′′ > 0 is sufficiently small, then
µ ·mS(D1, . . . , Dq, π(w)) = µ ·mS(D1, . . . , Dq, w)

≤ 1
[k : Q]

∑
v∈S

max
1≤j≤ℓ

λBj ,v(w)

≤ (dim V + ϵ′′)hπ∗L (w) + µC

= (dim V + ϵ′′)hL (π(w)) + µC

≤ µ(Nevbir(L , D1, . . . , Dp) + ϵ)hL (π(w)) + µC

for all w ∈W (k) outside of a proper Zariski-closed subset. Indeed, the first
step is (12.1.6), the second is (12.1.5) (noting that cv,i = 0 for all v and i),
the third step follows from Schmidt’s Subspace Theorem in the form of [9,
Thm. 2.10], the fourth step holds by functoriality of heights, and the last
step holds by (12.1.4) and the choices of ϵ′ and ϵ′′.

Dividing this by µ then gives (12.1.1). □

Proof of Theorems 1.15 and 1.9. Theorem 1.15 is immediate from Theo-
rems 12.1 and 10.4. Combining Theorem 1.15 with Theorem 1.14 (Propo-
sition 4.3) then gives Theorem 1.9. □

Remark 12.2. When D1, . . . , Dp are Q-Cartier b-divisors, Theorem 12.1 for
general p reduces to the special case p = 1, with the divisor

∨p
i=1 Di. This

follows immediately from Propositions 10.5(c) and 11.4. However, this is
not true in the more general case of R-Cartier b-divisors, because

∨
Di may

not exist.

13. An Example: Linear Subspaces of Pn
k

This section gives an example involving linear subspaces of Pn
k .

Let Y1, . . . , Yq be linear subvarieties of Pn
k that intersect properly. In this

case, Definition 4.1 reduces to the condition that they intersect properly in
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the sense of intersection theory; i.e.,

(13.1) codim
⋂
i∈I

Yi =
∑
i∈I

codim Yi

for all nonempty I ⊆ {1, . . . , q} such that
⋂

i∈I Yi ̸= ∅.
We now compute β(O(1), Yi) for these subschemes.

Proposition 13.2. Let k be a field, let X = Pn
k with n > 0, and let Y be

an integral linear subscheme of X of codimension r > 0. Then

(13.2.1) β(O(1), Y ) = r

n + 1 .

Proof. Let x0, . . . , xn be homogeneous coordinates on X. We may assume
that Y is the subscheme x1 = · · · = xr = 0. Let I be the ideal sheaf
corresponding to Y .

First, for all N ∈ N, H0(X, O(N)) has a basis over k consisting of all
homogeneous monomials of degree N in x0, . . . , xn. For all m ∈ N the
subspace H0(X, O(N)⊗I m) of H0(X, O(N)) is generated by

{xj0
0 · · ·x

jn
n : j0 + · · ·+ jn = N and j1 + · · ·+ jr ≥ m} .

Therefore
∞∑

m=1
h0(X, O(N)⊗I m)

=
∞∑

m=1

∣∣∣{(j0, . . . , jn) ∈ Nn+1 :
∑

ji = N and j1 + · · ·+ jr ≥ m
}∣∣∣

=
∑

(j0,...,jn)∈Nn+1∑
ji=N

(j1 + · · ·+ jr) ,

where the second equality holds because each tuple (j0, . . . , jn) occurs in
the set in the second sum for j1 + · · ·+ jr values of m.

Let J = {(j0, . . . , jn) ∈ Nn+1 :
∑

ji = N}. As noted in Ru [7, Exam-
ple 1.2],

∑
J jl is independent of l (by symmetry), so∑

J

(j1 + · · ·+ jr) = r

n + 1
∑

J

(j0 + · · ·+ jn) = rN

n + 1 |J | .

Therefore,

lim
N→∞

∑∞
m=1 h0(X, O(N)⊗I m)

Nh0(X, O(N)) = lim
N→∞

(rN/(n + 1))|J |
N |J |

= r

n + 1 ,

which implies (13.2.1). □

As a corollary of Theorem 1.9, we then obtain:
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Theorem 13.3. Let k be a number field, let S be a finite set of places of
k, let X = Pn

k , and let Y1, . . . , Yq be linear subvarieties of X in general
position (according to (13.1)). Then, for all ϵ > 0 and all C ∈ R, there is
a proper Zariski-closed subset Z of X such that the inequality

q∑
i=1

(codim Yi)mS(Yi, x) ≤ (n + 1 + ϵ)hk(x) + C

holds for all x ∈ X(k) outside of Z.

This is a consequence of [15, (3.9)], in which D is a finite collection of
hyperplanes containing, for each i, a subset whose intersection is Yi.

It is also a special case of the Main Theorem of Heier and Levin [3].
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