Let be a finite extension of , let , respectively , be the division fields of level , respectively , arising from a Lubin-Tate formal group over , and let Gal(). It is known that the valuation ring cannot be free over its associated order in unless . We determine explicitly under the hypothesis that the absolute ramification index of is sufficiently large.
Soit une extension finie de et les corps de division de niveaux respectifs et associés à un groupe formel de Lubin-Tate, et soit Gal(). On sait que si l’anneau de valuation de n’est pas libre sur son ordre associé dans . Nous explicitons dans le cas où l’indice absolu de ramification de est assez grand.
@article{JTNB_1997__9_2_449_0, author = {Nigel P. Byott}, title = {Associated orders of certain extensions arising from {Lubin-Tate} formal groups}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {449--462}, publisher = {Universit\'e Bordeaux I}, volume = {9}, number = {2}, year = {1997}, zbl = {0902.11052}, mrnumber = {1617408}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_449_0/} }
TY - JOUR AU - Nigel P. Byott TI - Associated orders of certain extensions arising from Lubin-Tate formal groups JO - Journal de théorie des nombres de Bordeaux PY - 1997 SP - 449 EP - 462 VL - 9 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_449_0/ LA - en ID - JTNB_1997__9_2_449_0 ER -
%0 Journal Article %A Nigel P. Byott %T Associated orders of certain extensions arising from Lubin-Tate formal groups %J Journal de théorie des nombres de Bordeaux %D 1997 %P 449-462 %V 9 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_449_0/ %G en %F JTNB_1997__9_2_449_0
Nigel P. Byott. Associated orders of certain extensions arising from Lubin-Tate formal groups. Journal de théorie des nombres de Bordeaux, Volume 9 (1997) no. 2, pp. 449-462. https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_449_0/
[B1] Some self-dual rings of integers not free over their associated orders, Math. Proc. Camb. Phil. Soc. 110 (1991), 5-10; Corrigendum, 116 (1994), 569. | MR
,[B2] Galois structure of ideals in wildly ramified abelian p-extensions of a p-adic field, and some applications, J. de Théorie des Nombres de Bordeaux 9 (1997), 201-219. | Numdam | MR | Zbl
,[C] Galois module structure of non-Kummer extensions, Preprint, National University of Singapore (1995). | MR
,[C-L] The associated orders of rings of integers in Lubin- Tate division fields over the p-adic number field, Ill. J. Math. 39 (1995), 30-38. | MR | Zbl
and ,[R] The Book of Prime Number Records, 2nd edition, Springer, 1989. | MR | Zbl
,[S] Local Class Field Theory, in Algebraic Number Theory (J.W.S. Cassels and A. Fröhlich, eds.), Academic Press, 1967. | MR
,[T] Formal groups and the Galois module structure of local rings of integers, J. reine angew. Math. 358 (1985), 97-103. | MR | Zbl
,