We investigate hyperderivatives of Drinfeld modular forms and determine formulas for these derivatives in terms of Goss polynomials for the kernel of the Carlitz exponential. As a consequence we prove that -adic modular forms in the sense of Serre, as defined by Goss and Vincent, are preserved under hyperdifferentiation. Moreover, upon multiplication by a Carlitz factorial, hyperdifferentiation preserves -integrality.
Nous étudions les dérivées divisées des formes modulaires de Drinfeld et déterminons des formules pour ces dérivées en termes de polynômes de Goss pour le noyau de l’exponentielle de Carlitz. Comme conséquence, nous prouvons que les dérivées divisées des formes modulaires -adiques au sens de Serre, définies par Goss et Vincent, sont encore des formes modulaires -adiques. De plus, à multiplication par une factorielle de Carlitz près, la -intégralité est stable sous les opérateurs de dérivation divisée.
Accepted:
Published online:
Mots-clés : Drinfeld modular forms, Goss polynomials, $v$-adic modular forms, hyperderivatives, false Eisenstein series
Matthew A. Papanikolas 1; Guchao Zeng 1
@article{JTNB_2017__29_3_729_0, author = {Matthew A. Papanikolas and Guchao Zeng}, title = {Theta operators, {Goss} polynomials, and $v$-adic modular forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {729--753}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.999}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.999/} }
TY - JOUR AU - Matthew A. Papanikolas AU - Guchao Zeng TI - Theta operators, Goss polynomials, and $v$-adic modular forms JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 729 EP - 753 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.999/ DO - 10.5802/jtnb.999 LA - en ID - JTNB_2017__29_3_729_0 ER -
%0 Journal Article %A Matthew A. Papanikolas %A Guchao Zeng %T Theta operators, Goss polynomials, and $v$-adic modular forms %J Journal de théorie des nombres de Bordeaux %D 2017 %P 729-753 %V 29 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.999/ %R 10.5802/jtnb.999 %G en %F JTNB_2017__29_3_729_0
Matthew A. Papanikolas; Guchao Zeng. Theta operators, Goss polynomials, and $v$-adic modular forms. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 729-753. doi : 10.5802/jtnb.999. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.999/
[1] Hyperdifferential properties of Drinfeld quasi-modular forms, Int. Math. Res. Not., Volume 2008 (2008) (Article ID rnn032, 56 pp.) | Zbl
[2] On certain families of Drinfeld quasi-modular forms, J. Number Theory, Volume 129 (2009) no. 12, pp. 2952-2990 | DOI | Zbl
[3] Linear independence and divided derivatives of a Drinfeld module. I, Number Theory in Progress, Vol. 1 (Zakopane-Kościelisko, 1997), de Gruyter, 1999, pp. 47-61 | Zbl
[4] An analogue of the von Staudt-Clausen theorem, Duke Math. J., Volume 3 (1937), pp. 503-517 | DOI | Zbl
[5] The digit principle, J. Number Theory, Volume 84 (2000) no. 2, pp. 230-257 | DOI | Zbl
[6] Rigid Analytic Geometry and its Applications, Progress in Mathematics, 218, Birkhäuser, 2004, xii+296 pages | Zbl
[7] On the coefficients of Drinfeld modular forms, Invent. Math., Volume 93 (1988) no. 3, pp. 667-700 | DOI | Zbl
[8] On the zeroes of Goss polynomials, Trans. Am. Math. Soc., Volume 365 (2013) no. 3, pp. 1669-1685 | DOI | Zbl
[9] von Staudt for , Duke Math. J., Volume 45 (1978), pp. 885-910 | DOI | Zbl
[10] The algebraist’s upper half-plane, Bull. Am. Math. Soc., Volume 2 (1980), pp. 391-415 | DOI | Zbl
[11] Modular forms for , J. Reine Angew. Math., Volume 317 (1980), pp. 16-39 | Zbl
[12] -adic Eisenstein series for function fields, Compos. Math., Volume 41 (1980) no. 1, pp. 3-38 | Zbl
[13] Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 35, 1996, xiii+422 pages | Zbl
[14] A construction of -adic modular forms, J. Number Theory, Volume 136 (2014), pp. 330-338 | DOI | Zbl
[15] Calculus in positive characteristic , J. Number Theory, Volume 131 (2011) no. 6, 1089.1104 pages | DOI | Zbl
[16] A non-standard Fourier expansion for the Drinfeld discriminant function, Arch. Math., Volume 95 (2010) no. 2, pp. 143-150 | DOI | Zbl
[17] Action of Hecke operators on two distinguished Drinfeld modular forms, Arch. Math., Volume 97 (2011) no. 5, pp. 423-429 | DOI | Zbl
[18] Log-algebraicity on tensor powers of the Carlitz module and special values of Goss -functions (in preparation)
[19] -expansions of Drinfeld modular forms, J. Number Theory, Volume 133 (2013) no. 7, pp. 2247-2266 | DOI | Zbl
[20] On hyperderivatives of single-cuspidal Drinfeld modular forms with -expansions, J. Number Theory, Volume 149 (2015), pp. 153-165 | DOI | Zbl
[21] Formes modulaires et fonctions zêta -adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) (Lecture Notes in Math.), Volume 350, Springer, 20173, pp. 191-268 | Zbl
[22] Function field modular forms and higher-derivations, Math. Ann., Volume 311 (1998) no. 3, pp. 439-466 | DOI | Zbl
[23] Drinfeld modular forms modulo , Proc. Am. Math. Soc., Volume 138 (2010) no. 12, pp. 4217-4229 | DOI | Zbl
[24] On the trace and norm maps from to , J. Number Theory, Volume 142 (2014), pp. 18-43 | DOI | Zbl
[25] Weierstrass points on the Drinfeld modular curve , Res. Math. Sci., Volume 2 (2015) (Paper No. 10, 40 pp.) | DOI | Zbl
Cited by Sources: