Theta operators, Goss polynomials, and v-adic modular forms
Journal de Théorie des Nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 729-753.

We investigate hyperderivatives of Drinfeld modular forms and determine formulas for these derivatives in terms of Goss polynomials for the kernel of the Carlitz exponential. As a consequence we prove that v-adic modular forms in the sense of Serre, as defined by Goss and Vincent, are preserved under hyperdifferentiation. Moreover, upon multiplication by a Carlitz factorial, hyperdifferentiation preserves v-integrality.

Nous étudions les dérivées divisées des formes modulaires de Drinfeld et déterminons des formules pour ces dérivées en termes de polynômes de Goss pour le noyau de l’exponentielle de Carlitz. Comme conséquence, nous prouvons que les dérivées divisées des formes modulaires v-adiques au sens de Serre, définies par Goss et Vincent, sont encore des formes modulaires v-adiques. De plus, à multiplication par une factorielle de Carlitz près, la v-intégralité est stable sous les opérateurs de dérivation divisée.

Received:
Accepted:
Published online:
DOI: 10.5802/jtnb.999
Classification: 11F52,  11F33,  11G09
Keywords: Drinfeld modular forms, Goss polynomials, v-adic modular forms, hyperderivatives, false Eisenstein series
@article{JTNB_2017__29_3_729_0,
     author = {Matthew A. Papanikolas and Guchao Zeng},
     title = {Theta operators, {Goss} polynomials, and $v$-adic modular forms},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {729--753},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {29},
     number = {3},
     year = {2017},
     doi = {10.5802/jtnb.999},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.999/}
}
TY  - JOUR
TI  - Theta operators, Goss polynomials, and $v$-adic modular forms
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2017
DA  - 2017///
SP  - 729
EP  - 753
VL  - 29
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.999/
UR  - https://doi.org/10.5802/jtnb.999
DO  - 10.5802/jtnb.999
LA  - en
ID  - JTNB_2017__29_3_729_0
ER  - 
%0 Journal Article
%T Theta operators, Goss polynomials, and $v$-adic modular forms
%J Journal de Théorie des Nombres de Bordeaux
%D 2017
%P 729-753
%V 29
%N 3
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.999
%R 10.5802/jtnb.999
%G en
%F JTNB_2017__29_3_729_0
Matthew A. Papanikolas; Guchao Zeng. Theta operators, Goss polynomials, and $v$-adic modular forms. Journal de Théorie des Nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 729-753. doi : 10.5802/jtnb.999. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.999/

[1] Vincent Bosser; Federico Pellarin Hyperdifferential properties of Drinfeld quasi-modular forms, Int. Math. Res. Not., Volume 2008 (2008) (Article ID rnn032, 56 pp.) | Zbl: 1151.11021

[2] Vincent Bosser; Federico Pellarin On certain families of Drinfeld quasi-modular forms, J. Number Theory, Volume 129 (2009) no. 12, pp. 2952-2990 | Article | Zbl: 1233.11052

[3] W. Dale Brownawell Linear independence and divided derivatives of a Drinfeld module. I, Number Theory in Progress, Vol. 1 (Zakopane-Kościelisko, 1997), de Gruyter, 1999, pp. 47-61 | Zbl: 0931.11026

[4] Leonard Carlitz An analogue of the von Staudt-Clausen theorem, Duke Math. J., Volume 3 (1937), pp. 503-517 | Article | Zbl: 63.0879.03

[5] Keith Conrad The digit principle, J. Number Theory, Volume 84 (2000) no. 2, pp. 230-257 | Article | Zbl: 1017.11061

[6] Jean Fresnel; Marius van der Put Rigid Analytic Geometry and its Applications, Progress in Mathematics, Volume 218, Birkhäuser, 2004, xii+296 pages | Zbl: 1096.14014

[7] Ernst-Ulrich Gekeler On the coefficients of Drinfeld modular forms, Invent. Math., Volume 93 (1988) no. 3, pp. 667-700 | Article | Zbl: 0653.14012

[8] Ernst-Ulrich Gekeler On the zeroes of Goss polynomials, Trans. Am. Math. Soc., Volume 365 (2013) no. 3, pp. 1669-1685 | Article | Zbl: 1307.11056

[9] David Goss von Staudt for F q [T], Duke Math. J., Volume 45 (1978), pp. 885-910 | Article | Zbl: 0404.12013

[10] David Goss The algebraist’s upper half-plane, Bull. Am. Math. Soc., Volume 2 (1980), pp. 391-415 | Article | Zbl: 0433.14017

[11] David Goss Modular forms for F r [T], J. Reine Angew. Math., Volume 317 (1980), pp. 16-39 | Zbl: 0422.10021

[12] David Goss π-adic Eisenstein series for function fields, Compos. Math., Volume 41 (1980) no. 1, pp. 3-38 | Zbl: 0422.10020

[13] David Goss Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 35, 1996, xiii+422 pages | Zbl: 0874.11004

[14] David Goss A construction of 𝔳-adic modular forms, J. Number Theory, Volume 136 (2014), pp. 330-338 | Article | Zbl: 1326.11020

[15] Sangtae Jeong Calculus in positive characteristic p, J. Number Theory, Volume 131 (2011) no. 6, 1089.1104 pages | Article | Zbl: 1225.13027

[16] Bartolomé López A non-standard Fourier expansion for the Drinfeld discriminant function, Arch. Math., Volume 95 (2010) no. 2, pp. 143-150 | Article | Zbl: 1227.11068

[17] Bartolomé López Action of Hecke operators on two distinguished Drinfeld modular forms, Arch. Math., Volume 97 (2011) no. 5, pp. 423-429 | Article | Zbl: 1281.11046

[18] Matthew A. Papanikolas Log-algebraicity on tensor powers of the Carlitz module and special values of Goss L-functions (in preparation)

[19] Aleksandar Petrov A-expansions of Drinfeld modular forms, J. Number Theory, Volume 133 (2013) no. 7, pp. 2247-2266 | Article | Zbl: 1286.11075

[20] Aleksandar Petrov On hyperderivatives of single-cuspidal Drinfeld modular forms with 𝒜-expansions, J. Number Theory, Volume 149 (2015), pp. 153-165 | Article | Zbl: 06397313

[21] Jean-Pierre Serre Formes modulaires et fonctions zêta p-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) (Lecture Notes in Math.) Volume 350, Springer, 20173, pp. 191-268 | Zbl: 0277.12014

[22] Yukiko Uchino; Takakazu Satoh Function field modular forms and higher-derivations, Math. Ann., Volume 311 (1998) no. 3, pp. 439-466 | Article | Zbl: 1155.11329

[23] Christelle Vincent Drinfeld modular forms modulo 𝔭, Proc. Am. Math. Soc., Volume 138 (2010) no. 12, pp. 4217-4229 | Article | Zbl: 1228.11065

[24] Christelle Vincent On the trace and norm maps from Γ 0 (𝔭) to GL 2 (A), J. Number Theory, Volume 142 (2014), pp. 18-43 | Article | Zbl: 1295.11049

[25] Christelle Vincent Weierstrass points on the Drinfeld modular curve X 0 (𝔭), Res. Math. Sci., Volume 2 (2015) (Paper No. 10, 40 pp.) | Article | Zbl: 06587994

Cited by Sources: