We discuss here characteristic -series as well as the group which appears to act as symmetries of these functions. We explain various actions of that arise naturally in the theory as well as extensions of these actions. In general such extensions appear to be highly arbitrary but in the case where the zeroes are unramified, the extension is unique (and it is reasonable to expect it is unique only in this case). Having unramified zeroes is the best one could hope for in finite characteristic and appears to be an avatar of the Riemann hypothesis in this setting; see Section 8 for a more detailed discussion.
Nous considérons ici les fonctions en caractéristique ainsi que le groupe qui se trouve agir comme des symétries de ces fonctions. Nous expliquons diverses actions de qui apparaissent naturellement dans la théorie ainsi que les extensions de ces actions. En général de telles extensions semblent hautement arbitraires, mais dans le cas où les zéros sont non-ramifiés, l’extension est unique (et il est raisonnable de s’attendre à l’unicité seulement dans ce cas-là). Avoir des zéros non-ramifiés est le mieux que l’on puisse espérer en caractéristique positive, et semble êtere un avatar de l’hypothèse de Riemann dans ce contexte. Voir Section 8 pour des discussions plus détaillées.
Revised:
Accepted:
Published online:
Keywords: $L$-series, Riemann hypothesis, digit permutations, measures, divided algebras
David Goss 1

@article{JTNB_2017__29_3_693_0, author = {David Goss}, title = {Digit permutations revisited}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {693--728}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.998}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.998/} }
TY - JOUR AU - David Goss TI - Digit permutations revisited JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 693 EP - 728 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.998/ DO - 10.5802/jtnb.998 LA - en ID - JTNB_2017__29_3_693_0 ER -
David Goss. Digit permutations revisited. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 693-728. doi : 10.5802/jtnb.998. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.998/
[1]
, 2016 (private communication)[2] Twisted characteristic zeta functions, J. Number Theory, Volume 168 (2016), pp. 180-214 | DOI | Zbl
[3] Functional identities for -series values in positive characteristic, J. Number Theory, Volume 142 (2014), pp. 223-251 | DOI | Zbl
[4] The distribution of the zeros of the Goss zeta function for , Math. Z., Volume 275 (2013) no. 3-4, pp. 835-861 | DOI | Zbl
[5] An essay on the Riemann Hypothesis, Open problems in mathematics, Springer, 2016, pp. 225-257 | Zbl
[6] The digit principle, J. Number Theory, Volume 84 (2000) no. 2, pp. 230-257 | DOI | Zbl
[7] Elliptic modules, Mat. Sb., Volume 94(136) (1974), pp. 594-627 | Zbl
[8] Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 35, Springer, 1996, xiii+422 pages | Zbl
[9] Applications of non-Archimedean integration to the -series of -sheaves, J. Number Theory, Volume 110 (2005) no. 1, pp. 83-113 | DOI | Zbl
[10] Zeta phenomenology, Noncommutative geometry, arithmetic, and related topics (2011), pp. 159-182 | Zbl
[11] A local field approach to the Riemann Hypothesis (2012) (https://arxiv.org/abs/1206.2040)
[12] An interpolation series for continuous functions of a -adic variable, J. Reine Angew. Math, Volume 199 (1958), pp. 23-34 erratum in ibid. 208 (1961), p. 70-72 | Zbl
[13]
, 2013 (private correspondence)[14] Values of certain -series in positive characteristic, Ann. Math., Volume 176 (2012) no. 3, pp. 2055-2093 | DOI | Zbl
[15] Combinatorial Identities, Robert E. Krieger Publishing Co., 1979, 256 pages
[16] Endomorphismes complètement continus des espaces Banach -adiques, Publ. Math., Inst. Hautes Étud. Sci., Volume 12 (1962), pp. 69-85 | DOI | Zbl
[17] The Riemann hypothesis for the Goss zeta function for , J. Number Theory, Volume 71 (1998) no. 1, pp. 121-157 | DOI | Zbl
[18] Dirichlet series in function fields, J. Number Theory, Volume 128 (2008) no. 7, pp. 1893-1899 | DOI | Zbl
[19] On characteristic zeta functions, Compos. Math., Volume 99 (1995) no. 3, pp. 231-247 | Zbl
[20] Differential operators and interpolation series in power series fields, J. Number Theory, Volume 71 (1998) no. 1, pp. 106-108 | DOI | Zbl
[21] Interpolation series for continuous functions on -adic completions of , Acta Arith., Volume 17 (1971), pp. 389-406 | DOI | Zbl
Cited by Sources: