In this article I define and study the overconvergent rigid fundamental group of a variety over an equicharacteristic local field. This is a non-abelian -module over the bounded Robba ring , whose underlying unipotent group (after base changing to the Amice ring ) is exactly the classical rigid fundamental group. I then use this to prove an equicharacteristic, -adic analogue of Oda’s theorem that a semistable curve over a -adic field has good reduction if and only if the Galois action on its -adic unipotent fundamental group is unramified.
Dans cette article je défine et étudie le groupe fondamental rigide surconvergent d’une variété algébrique sur un corps local d’équicaractéristique. C’est un -module non-abélien sur l’anneu de Robba borné , qui donne le groupe fondamental rigide classique après un changement de base vers l’anneau d’Amice . Puis je prouve un ananlogue -adique d’un théorème d’Oda qui dit qu’une courbe semistable sur un corps -adique a bonne réduction si et seulement si l’action de Galois sur le groupe fondamental rendu unipotent est non-ramifiée.
Revised:
Accepted:
Published online:
Mots-clés : unipotent fundamental groups, function fields, monodromy, $p$-adic cohomology, good reduction
Christopher Lazda 1
@article{JTNB_2017__29_3_755_0, author = {Christopher Lazda}, title = {Fundamental groups and good reduction criteria for curves over positive characteristic local fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {755--798}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.1000}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1000/} }
TY - JOUR AU - Christopher Lazda TI - Fundamental groups and good reduction criteria for curves over positive characteristic local fields JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 755 EP - 798 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1000/ DO - 10.5802/jtnb.1000 LA - en ID - JTNB_2017__29_3_755_0 ER -
%0 Journal Article %A Christopher Lazda %T Fundamental groups and good reduction criteria for curves over positive characteristic local fields %J Journal de théorie des nombres de Bordeaux %D 2017 %P 755-798 %V 29 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1000/ %R 10.5802/jtnb.1000 %G en %F JTNB_2017__29_3_755_0
Christopher Lazda. Fundamental groups and good reduction criteria for curves over positive characteristic local fields. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 755-798. doi : 10.5802/jtnb.1000. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1000/
[1] A -adic nonabelian criterion for good reduction of curves, Duke Math. J., Volume 164 (2015) no. 13, pp. 2597-2642 | DOI | Zbl
[2] Cohomologie rigide et cohomologie rigide à supports propres, première partie (1996) (http://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf)
[3] Comparison of relatively unipotent log de Rham fundamental groups (in preparation)
[4] F-isocristaux unipotents, Compos. Math., Volume 116 (1999) no. 1, pp. 81-110 | DOI | Zbl
[5] Le groupe fondamental de la droite projective moins trois points, Galois groups over (Berkeley, CA, 1987) (Mathematical Sciences Research Institute. Publications), Volume 16 (1989), x+449 pages | DOI | Zbl
[6] On Nori’s fundamental group scheme, Geometry and dynamics of groups and spaces (Progress in Mathematics), Volume 265, Birkhäuser, 2008, pp. 377-398 | DOI | Zbl
[7] Motivic fundamental groups and integral points, Duke Math. J., Volume 160 (2011) no. 3, pp. 503-565 | DOI | Zbl
[8] -modules, perverse sheaves, and representation theory, Progress in Mathematics, 236, Birkhäuser, 2008, x+407 pages | DOI | Zbl
[9] Semi-stable reduction and crystalline cohomology with logarithmic poles, Périodes -adiques (Bures-sur-Yvette, 1988) (Astérisque), Volume 223 (1994), pp. 221-268 | Zbl
[10] Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math., Volume 134 (1998) no. 2, pp. 301-333 erratum in ibid. 138 (1999), no. 1, p. 225 | DOI | Zbl
[11] Log smooth deformation theory, Tôhoku Math. J., Volume 48 (1996) no. 3, pp. 317-354 | DOI | Zbl
[12] Logarithmic structures of Fontaine-Illusie, Algebraic Analysis, Geometry and Number Theory (Baltimore, 1989) (Supplement to the American Journal of Mathematics) (1989), pp. 191-224 | Zbl
[13] Descent theorems for overconvergent -crystals, Massachusetts Institute of Technology (USA) (2000) (Ph. D. Thesis) | DOI
[14] Relative fundamental groups and rational points, Rend. Semin. Mat. Univ. Padova, Volume 134 (2015), pp. 1-45 | DOI | Zbl
[15] Rigid Cohomology over Laurent Series Fields, Algebra and Applications, 21, Springer, 2016, x+267 pages | DOI | Zbl
[16] A Note on Ramification of the Galois Representation of the Fundamental Group of an Algebraic Curve, II, J. Number Theory, Volume 53 (1995) no. 2, pp. 342-355 | DOI | Zbl
[17] Crystalline fundamental groups I: Isocrystals on log crystalline site and log convergent site, J. Math. Sci., Tokyo, Volume 7 (2000) no. 4, pp. 509-656 | Zbl
[18] Algebraic monodromy groups of -motives, ETH Zürich (Switzerland) (2007) (Ph. D. Thesis) | DOI
[19] Slope filtration of quasi-unipotent overconvergent F-isocrystals, Ann. Inst. Fourier, Volume 48 (1998) no. 2, pp. 379-412 | DOI | Zbl
Cited by Sources: