Icosahedral invariants and Shimura curves
Journal de Théorie des Nombres de Bordeaux, Tome 29 (2017) no. 2, pp. 603-635.

Une courbe de Shimura est un espace de modules de surfaces abéliennes avec multiplication par une algèbre de quaternions. En utilisant les périodes pour une famille des surfaces K3 paramétrées par les invariants icosaédriques qui ont été étudiés par Klein, nous obtenons des modèles explicites de certaines courbes de Shimura.

Shimura curves are moduli spaces of abelian surfaces with quaternion multiplication. Models of Shimura curves are very important in number theory. Klein’s icosahedral invariants 𝔄,𝔅 and give the Hilbert modular forms for 5 via the period mapping for a family of K3 surfaces. Using the period mappings for several families of K3 surfaces, we obtain explicit models of Shimura curves with small discriminant in the weighted projective space Proj([𝔄,𝔅,]).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.993
Classification : 11F46,  14J28,  14G35,  11R52
Mots clés : K3 surfaces, Abelian surfaces, Shimura curves, Hilbert modular functions, quaternion algebra
@article{JTNB_2017__29_2_603_0,
     author = {Atsuhira Nagano},
     title = {Icosahedral invariants and {Shimura} curves},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {603--635},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {29},
     number = {2},
     year = {2017},
     doi = {10.5802/jtnb.993},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.993/}
}
Atsuhira Nagano. Icosahedral invariants and Shimura curves. Journal de Théorie des Nombres de Bordeaux, Tome 29 (2017) no. 2, pp. 603-635. doi : 10.5802/jtnb.993. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.993/

[1] Sang Yook An; Seog Young Kim; David C. Marshall; Susan H. Marshall; William G. McCallum; Alexander R. Perlis Jacobians of Genus One Curves, J. Number Theory, Volume 90 (2001) no. 2, pp. 304-315 | Article

[2] Amnon Besser Elliptic fibrations of K3 surfaces and QM Kummer surfaces, Math. Z., Volume 288 (1998) no. 2, pp. 283-308 | Article

[3] Matteo Alfonso Bonfanti; Bert Van Geemen Abelian surfaces with an automorphism and quaternionic multiplication, Can. J. Math., Volume 68 (2016) no. 1, pp. 24-43 | Article

[4] Adrian Clingher; Charles F. Doran Lattice polarized K3 surfaces and Siegel modular forms, Adv. Math., Volume 231 (2012) no. 1, pp. 172-212 | Article

[5] David Cox; John Little; Donal O’Shea Using algebraic geometry, Graduate Texts in Mathematics, Volume 185, Springer, 1998, xii+499 pages

[6] Igor V. Dolgachev Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci., New York, Volume 81 (1996) no. 3, pp. 2599-2630 | Article

[7] Noam Elkies Shimura curve computations, Algorithmic number theory. 3rd international symposium (Lecture Notes in Computer Science) Volume 1423 (1998), pp. 1-47

[8] Noam Elkies Shimura curve computations via K3 surfaces of Néron-Severi rank at least 19, Algorithmic number theory. 8th international symposium (Lecture Notes in Computer Science) Volume 5011 (2008), pp. 196-211

[9] Noam Elkies; Abhinav Kumar K3 Surfaces and equations for Hilbert modular surfaces, Algebra Number Theory, Volume 8 (2014) no. 10, pp. 2297-2411 | Article

[10] Gerard van der Geer Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 16, Springer, 1988, ix+291 pages

[11] Kenji Hashimoto; Atsuhira Nagano; Kazushi Ueda Modular surfaces associated with toric K3 surfaces (2014) (https://arxiv.org/abs/1403.5818)

[12] Ki-Ichiro Hashimoto Explicit form of quaternion modular embeddings, Osaka J. Math., Volume 32 (1995) no. 3, pp. 533-546

[13] Ki-Ichiro Hashimoto; Naoki Murabayashi Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves of genus two, Tôhoku Math. J., Volume 47 (1995) no. 2, pp. 271-296 | Article

[14] Friedrich Hirzebruch The ring of Hilbert modular forms for real quadratic fields of small discriminant, Modular Funct. of one Var. VI, Proc. int. Conf., Bonn 1976 (Lecture Notes in Mathematics) Volume 627 (1977), pp. 287-323

[15] Georges Humbert Sur les fonctions abéliennes singulières, Oeuvres de G. Humbert 2, pub. par les soins de Pierre Humbert et de Gaston Julia, Gauthier-Villars, 1936, pp. 297-401

[16] Felix Klein Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Tauber, 1884

[17] David R. Kohel; Helena A. Verrill Fundamental Domains for Shimura Curves, J. Théor. Nombres Bordx, Volume 15 (2003) no. 1, pp. 205-222 | Article

[18] Abhinav Kumar K3 surfaces associated to curves of genus two, Int. Math. Res. Not., Volume 16 (2008) (ArticleID: rnm165)

[19] Akira Kurihara On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci., Univ. Tokyo, Volume 25 (1978), pp. 277-300

[20] Rolf Müller Hilbertsche Modulformen und Modulfunktionen zu (5), Arch. Math., Volume 45 (1985), pp. 239-251 | Article

[21] Atsuhira Nagano Period differential equations for the families of K3 surfaces with two parameters derived from the reflexive polytopes, Kyushu J. Math., Volume 66 (2012) no. 1, pp. 193-244 | Article

[22] Atsuhira Nagano A theta expression of the Hilbert modular functions for 5 via period of K3 surfaces, Kyoto J. Math., Volume 53 (2013) no. 4, pp. 815-843 | Article

[23] Atsuhira Nagano Double integrals on a weighted projective plane and Hilbert modular functions for (5), Acta Arith., Volume 167 (2015) no. 4, pp. 327-345 | Article

[24] Atsuhira Nagano Icosahedral invariants and a construction of class fields via periods of K3 surfaces (2017) (https://arxiv.org/abs/1504.07500v7)

[25] Atsuhira Nagano; Hironori Shiga Modular map for the family of abelian surfaces via elliptic K3 surfaces, Math. Nachr., Volume 288 (2015) no. 1, pp. 89-114 | Article

[26] Victor Rotger Modular Shimura varieties and forgetful maps, Trans. Am. Math. Soc., Volume 356 (2004) no. 4, pp. 1535-1550 | Article

[27] Victor Rotger Shimura curves embedded in Igusa’s threefold, Modular curves and Abelian varieties. Based on lectures of the conference, Bellaterra, Barcelona, July 2002 (Prog. Math.) Volume 224, Birkhäuser, 2004, pp. 263-276

[28] Goro Shimura Construction of class fields and zeta functions of algebraic curves, Ann. Math., Volume 85 (1967), pp. 58-159 | Article

[29] Goro Shimura On canonical models of arithmetic quotients of bounded symmetric domains, Ann. Math, Volume 91 (1970), pp. 144-222 | Article

[30] Goro Shimura On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann., Volume 215 (1975), pp. 135-164 | Article

[31] Goro Shimura Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Mathematical Series, Volume 46, Princeton University Press, 1998, ix+217 pages

[32] Marie-France Vignéras Arithmétiques des algèbres de quaternions, Lecture Notes in Mathematics, Volume 80, Springer, 1980, vii+169 pages

[33] John Voight Shimura Curve Computations, Arithmetic geometry (Clay Mathematics Proceedings) Volume 8, Clay Mathematics Institute, 2009, pp. 103-113

[34] Yifan Yang Quaternionic loci in Siegel’s modular threefolds, 2015 (http//www.tims.ntu.edu.tw/download.talk.Summary.pdf)

Cité par document(s). Sources :