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Icosahedral invariants and Shimura curves

par Atsuhira NAGANO

Résumé. Une courbe de Shimura est un espace de modules de
surfaces abéliennes avec multiplication par une algèbre de qua-
ternions. En utilisant les périodes pour une famille des surfaces
K3 paramétrées par les invariants icosaédriques qui ont été étu-
diés par Klein, nous obtenons des modèles explicites de certaines
courbes de Shimura.

Abstract. Shimura curves are moduli spaces of abelian sur-
faces with quaternion multiplication. Models of Shimura curves
are very important in number theory. Klein’s icosahedral invari-
ants A,B and C give the Hilbert modular forms for

√
5 via the

period mapping for a family of K3 surfaces. Using the period
mappings for several families of K3 surfaces, we obtain explicit
models of Shimura curves with small discriminant in the weighted
projective space Proj(C[A,B,C]).

1. Introduction

This paper gives an application of the moduli theory of K3 surfaces to
the number theory. We obtain an explicit relation among abelian surfaces
with quaternion multiplication, Hilbert modular functions and periods of
K3 surfaces.

The moduli spaces for principally polarized abelian surfaces determined
by the structure of the ring of endomorphisms are very important in number
theory ([10, Chap. IX, Prop. 1.2], see also Table 1.1). In this paper, we study
the moduli spaces of principally polarized abelian surfaces with quaternion
multiplication (for the detailed definition, see Section 2.2). They are called
Shimura curves.

Manuscrit reçu le 1er février 2016, révisé le 9 avril 2016, accepté le 6 juin 2016.
Mathematics Subject Classification. 11F46, 14J28, 14G35, 11R52.
Mots-clefs. K3 surfaces, Abelian surfaces, Shimura curves, Hilbert modular functions, quater-

nion algebra.
The author would like to thank Professor Hironori Shiga for helpful advises and valuable sug-

gestions, and also to Professor Kimio Ueno for kind encouragements. He is thankful to Doctor
Shun Imai for valuable comments for RÉSUMÉ in French. He is grateful to the referee for careful
comments. This work is supported by The JSPS Program for Advancing Strategic International
Networks to Accelerate the Circulation of Talented Researchers “Mathematical Science of Sym-
metry, Topology and Moduli, Evolution of International Research Network based on OCAMI”,
The Sumitomo Foundation Grant for Basic Science Research Project (No.150108) and Waseda
University Grant for Special Research Project (2014B-169 and 2015B-191).



604 Atsuhira Nagano

Abelian surface A End0(A) Moduli Space
Generic Rational field Igusa 3-fold A2

Real multiplication Real quadratic field Humbert surface H
Quaternion multiplication Quaternion algebra Shimura curve S
Complex multiplication CM field CM points

Table 1.1. The moduli spaces of abelian surfaces

To the best of the author’s knowledge, to obtain explicit models of
Shimura curves is a non trivial problem because Shimura curves have no
cusps. In this paper, we shall obtain new models of Shimura curves for
quaternion algebras with small discriminant. We consider the weighted pro-
jective space P(1 : 3 : 5) = Proj(C[A,B,C]), where A,B and C are Klein’s
icosahedral invariants of weight 1, 3 and 5 respectively. We shall give the
explicit defining equations of the Shimura curves for small discriminant in
Proj(C[A,B,C]).

Here, let us see the reason why we consider the icosahedral invariants.
The moduli space H∆ of principally polarized abelian surfaces with real
multiplication by O∆ is called the Humbert surface (for detail, see Sec-
tion 2.1). The Humbert surface H∆ is uniformized by Hilbert modular
functions for ∆. Among Humbert surfaces, the case for Q(

√
5) is the sim-

plest, since its discriminant is the smallest. In [22], we studied the family
F = {S(A : B : C)} of elliptic K3 surfaces. We can regard F as a family
parametrized over H5.

By the way, the Igusa 3-fold A2 is the moduli space of principally po-
larized abelian surfaces. The family FCD = {SCD(α : β : γ : δ)} of K3
surfaces for (α : β : γ : δ) ∈ P(2 : 3 : 5 : 6) is studied by Kumar [18],
Clingher and Doran [4] and [25]. This family FCD is parametrized over A2.
Our family F can be regarded as a subfamily of FCD. However, it is not
apparent to describe the embedding F ↪→ FCD explicitly. Our first result
of this paper is to obtain the embedding Ψ5 : P(1 : 3 : 5) ↪→ P(2 : 3 : 5 : 6)
of the parameter spaces (see Theorem 3.16).

A Shimura curve S is a 1-dimensional subvariety of A2. In several cases,
S is contained in the image Ψ5(P(1 : 3 : 5)) and the pull-back Ψ∗5(S) is
a curve in P(1 : 3 : 5). In this paper, we obtain models of Ψ∗5(S) for such
cases. We note that S and Ψ∗5(S) are isomorphic as varieties. Good modular
properties of Proj(C[A,B,C]) enable us to study Ψ∗5(S) effectively. Also, our
study is based on the results of quaternion algebras due to Hashimoto [12]
and elliptic K3 surfaces due to Elkies and Kumar [9].

As a result, we obtain the following explicit defining equations for the
Shimura curves Ψ∗5(S) for discriminant 6, 10, 14 and 15. Setting X = B

A3 ,
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Y = C

A5 , (X,Y ) are affine coordinates of H5. We have the models (see
Theorem 5.1, 5.5, 6.1 and 6.2):

Ψ∗5(S6) : 3125− 3375X + 243Y = 0,
Ψ∗5(S10) : 1− 5X + Y = 0,
Ψ∗5(S14) : 30517578125 + 911865234375X + 42529296875X2

− 97897974609375X3 + 424490000000000X4

− 345600000000000X5 + 2383486328125Y
+ 32875975781250XY − 147816767984375X2Y

+ 228155760000000X3Y + 19189204671875Y 2

− 29675018141125XY 2 + 344730881243Y 3 = 0,
Ψ∗5(S15) : 30517578125 + 911865234375X + 42529296875X2

− 97897974609375X3 + 424490000000000X4

− 345600000000000X5 + 2383486328125Y = 0.
Some researchers obtained models of Shimura curves (for example, Kuri-

hara [19], Hashimoto and Murabayashi [13], Besser [2], Elkies [7], [8], Kohel
and Verrill [17], Voight [33], Bonfanti and van Geemen [3]). In comparison
with already known models, our new models have the following features.

• They are closely related to the classical invariant theory. Namely,
our coordinates A,B,C of the common ambient space of Shimura
curves are coming from Klein’s icosahedral invariants. Especially,
the Shimura curves for discriminant 6 and 10 have very simple
forms. These two curves are just lines touching the locus of Klein’s
icosahedral equation (see Figure 5.1).
• The moduli of our family F of K3 surfaces were studied in detail.
We have an explicit expression of the period mapping ([22],[23])
and the Gauss–Manin connection ([21]) for F . These properties are
very useful to study Shimura curves effectively (for example, see the
proof of Theorem 5.5).
• Shimura ([31]) studied unramified class fields over CM fields of cer-
tain types. In [24], an explicit construction of such class fields over
quartic CM fields using the special values of X and Y is given.
• In fact, ourK3 surface S(A : B : C) is a toric hypersurface. To study
the mirror symmetry for toric K3 hypersurfaces is an interesting
problem in recent geometry and physics. In [11], our S(A : B : C)
are studied from the viewpoint of mirror symmetry. Especially, our
parameters X and Y are directly related to the secondary stack for
the toric K3 hypersurface.

Thus, our new models of Shimura curves are naturally related to various
topics.



606 Atsuhira Nagano

2. Moduli of principally polarized abelian surfaces

2.1. Principally polarized abelian surfaces with real multiplica-
tion. Let S2 be the Siegel upper half plane of rank 2. Let us consider a
principally polarized abelian variety (A,Θ) with the theta divisor Θ and
the period matrix (Ω, I2), where Ω ∈ S2. The symplectic group Sp(4,Z)
acts on S2. The quotient space Sp(4,Z)\S2 gives the moduli space A2 of
principally polarized abelian varieties. This is called the Igusa 3-fold.

The ring of endomorphisms is given by End(A) = {a ∈M2(C) | a(Ω, I2) =
(Ω, I2)M for some M ∈M(4,Z)}. The principal polarization given by Θ in-
duces the alternating Riemann form E(z, w). Set End0(A) = End(A)⊗ZQ.
If A is a simple abelian variety, then End0(A) is a division algebra. The
Rosati involution a 7→ a◦ is an involution on End0(A) and gives an ad-
joint of the alternating Riemann form: E(az, w) = E(z, a◦w). Note that
the Rosati involution satisfies Tr(aa◦) > 0.

A point Ω =
(
τ1 τ2
τ2 τ3

)
∈ S2 is said to have the singular relation with

the invariant ∆ if there exist relatively prime integers a, b, c, d and e such
that the following equations hold:
(2.1) aτ1 + bτ2 + cτ3 + d(τ2

2 − τ1τ3) + e = 0, ∆ = b2 − 4ac− 4de .
Definition 2.1. Set N∆ = {τ ∈ S2 | τ has a singular relation with ∆}.
The image of N∆ under the canonical mapping S2 → Sp(4,Z)\S2 is called
the Humbert surface of invariant ∆.

Let O∆ be the ring of integers of the field Q(
√

∆). The Humbert sur-
face of invariant ∆ gives the moduli space of principally polarized abelian
surfaces (A,Θ) with O∆ ⊂ End(A) and Q(

√
∆) ∩ End(A) = O∆. Such an

abelian surface is said to have real multiplication by O∆ (see [10] or [12]).

2.2. Quaternion multiplication and Shimura curves. In this subsec-
tion, we recall the properties of Shimura curves. For detail, see [27], [26]
or [32].

Let B be an indefinite quaternion algebra over Q with B 6' M2(Q). We
have an isomorphism B⊗QR 'M2(R). Let p1, · · · , pt be the distinct primes
at which B ramifies. We can show that t ∈ 2Z. The number D = p1 · · · pt
is called the discriminant of B. Two quaternion algebras B and B′ are
isomorphic as Q-algebras if and only if the discriminant of B coincides
with that of B′.

For α ∈ B, let α 7→ α′ be the canonical involution defined by α′ =
TrB/Q(α) − α. An element α ∈ B is called integral if both TrB/Q(α) and
NrB/Q(α) are in Z. If a subring O(⊂ B) of integral elements is a finitely
generated Z-module of B and satisfies QO = B, we call O an order of B. A
maximal order is an order that is maximal under inclusion. We note that
a maximal order in B is unique up to conjugation.



Icosahedral invariants and Shimura curves 607

For a maximal order O in B with discriminant D, we put Γ(1) = {γ ∈
O | NrB/Q(γ) = 1}. The group Γ(1) gives a discrete subgroup of SL(2,R).
For ρ ∈ O satisfying ρ2 < 0, we have an involution given by iρ : α 7→
ρ−1α′ρ. For ξ, η ∈ B, put Eρ(ξ, η) = Tr(ρξη′). The pairing Eρ gives a skew
symmetric form on B. Moreover, we can show that for γ ∈ Γ(1) we have
(2.2) Eρ(ξγ, ηγ) = Eρ(ξ, η).

Definition 2.2. Take ρ ∈ O such that ρ2 = −D and ρO = Oρ. We call
(A,Θ, ι) a principally polarized abelian surface with quaternion multiplica-
tion by (O, iρ) if ι : O ↪→ End(A) and ι(α) 7→ ι ◦ iρ(α) coincides with the
Rosati involution ι(α) 7→ ι(α)◦.

The quotient space Γ(1)\H for B of discriminant D is already a compact
Riemann surface. This is called the Shimura curve SD for BD. Shimura
proved that SD is isomorphic to the moduli space of (A,Θ, ι) with quater-
nion multiplication by (O, iρ). Such Shimura curves were firstly studied
in [28], [29] and [30]. There exists a quaternion modular embedding (see
the following diagram):

Ω : H→ S2; w 7→ Ω(w).(2.3)

H Ω−−−−→ S2

Γ(1)
y ySp(4,Z)

H −−−−→
Ω

S2

We note that the Shimura curve SD does not be embedded in the Igusa
3-fold A2. There exist a projection ϕD : SD → SD ⊂ A2 and a group
WD ⊂ Aut(SD) such that SD is birationally equivalent to SD/WD. We note
that ϕD is either generically 2 to 1 or generically 4 to 1. In this paper, we
also call the curve SD the Shimura curve. The curve SD gives isomorphism
classes of (A,Θ). The above projection ϕD is coming from the forgetful
mapping (A,Θ, ι) 7→ (A,Θ). For detail, see [27] and [26].

Remark 2.3. The moduli spaces SD are also called Shimura curves in
several works (for example, see Hashimoto–Murabayashi [13] or Yang [34]).

Remark 2.4. The choice of the mapping ϕD : SD → A2 is not unique and
depends on the principal polarizations on the corresponding abelian sur-
faces. The number of the choice of ϕ is calculated by Rotger [27]. Especially,
if D = 6, 10, 15, then the choice of ϕD is unique. Moreover, if D = 6, 10, 15,
then ϕD is a 4 to 1 mapping ([26]).

2.3. The result of Hashimoto. In this subsection, we review the result
of Hashimoto [12].
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Letting B be an indefinite quaternion algebra with discriminant D =
p1 · · · pt and O be a maximal order of B, take a prime number p such that
p ≡ 5 mod 8 and

( p
pj

)
= −1 for pj 6= 2. Here,

(a
b

)
denotes the Legendre

symbol. We can assume that B is expressed as B = Q+Qi+Qj+Qij with
i2 = −D, j2 = p, ij = −ji. In this subsection, we consider the quaternion
multiplication by (O, iρ) for ρ = i−1 = −i

D
.

Remark 2.5. We note that ρ is not always an element of O. Nevertheless,
the notation in Definition 2.2 is available for ρ = i−1. In fact, i ∈ O satisfies
i2 = −D, iO = Oi and ιi(α) = i−1α′i = iα′i−1 = ιi−1(α) (α ∈ B).

Take a, b ∈ Z such that a2D+1 = pb.We have a basis η = {η1, η2, η3, η4}
ofO is given by η1 = i+ij

2 −
p−1

2
aDj+ij

p , η2 = −aD− aDj+ij
p , η3 = 1, η4 = 1+j

2 .

We can see that

(2.4) (Eρ(ηj , ηk)) = J =
(

0 I2
−I2 0

)
.

For γ ∈ Γ(1), due to (2.2) and (2.4), {η1γ, · · · , η4γ} gives another symplectic
basis of O with respect to Eρ. Hence, there exists Mγ ∈ Sp(4,Z) such that
(η1γ, · · · , η4γ) = (η1, · · · , η4)tMγ . for any γ ∈ Γ(1). For w ∈ H, we set an

R-linear isomorphism fw : B ⊗Q R ' M2(R) → C2 given by α 7→ α

(
w
1

)
.

Put ωj = fw(ηj) ∈ C2 (j = 1, · · · , 4). Then, Λw = fw(O) = 〈ω1, · · · , ω4〉Z
gives a lattice in C2 and C2/Λw gives a complex torus with the period
matrix (ω1, ω2, ω3, ω4) = (Ω1(w)Ω2(w)). Then, Ex : C × C → R given by
Ew(fw(ξ), fw(η)) = −Eρ(ξ, η) induces a non-degenerate skew symmetric
pairing Ew : Λw×Λw → Z. This gives an alternating Riemann form on the
complex tours C2/Λw. Therefore, we have the holomorphic embedding Ω
in (2.3) given by

w 7→Ω(w) = Ω−1
2 (w)Ω1(w)(2.5)

= 1
pw

ε2 + (p−1)aD
2 w +Dε2w2 ε− (p− 1)aDw −Dεw2

ε− (p− 1)aDw −Dεw2 −1− 2aDw +Dw2

 ,
where ε = 1+√p

2 (see [12] Theorem 3.5).
Letting pr be the canonical projection S2 → A2, the image of H under

the mapping pr ◦ Ω corresponds to the Shimura curve SD ⊂ A2.

The matrix Ω(w) =
(
τ1 τ2
τ2 τ3

)
∈ S2 in (2.5) satisfies the singular relations

in (2.1). This is explicitly given by

(2.6) mτ1 + (m+ 2aDn)τ2−
p− 1

4 mτ3 + n(τ2
2 − τ1τ3) + (a2D− b)Dn = 0
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with two parameters m,n ∈ Z ([12] Theorem 5.1). The invariant ∆ in (2.1)
for the singular relation (2.6) is given by the quadratic form

(2.7) ∆(m,n) = pm2 + 4aDmn+ 4bDn2,

where m,n ∈ Z. Moreover, he showed the following theorem.

Theorem 2.6.
(1) [12, Theorem 5.2] For a positive non-square integer ∆ such that

∆ ≡ 1, 0 mod 4, the following conditions are equivalent:
(a) The number ∆ is represented by the quadratic form ∆(m,n)

in (2.7) with relatively prime integers m,n ∈ Z.
(b) The image SD = ϕD(SD) ⊂ A2 of the Shimura curve is con-

tained in the Humbert surface H∆.
(2) [12, Corollary 5.3] The Shimura curve SD is contained in the inter-

section H∆1 ∩ H∆2 of two Humbert surfaces if and only if ∆1 and
∆2 are given by ∆(m,n) with relatively prime integers m,n.

Remark 2.7. As we noted in Remark 2.4, the mapping ϕD is not always
unique. For a generic D, the mapping ϕD and the model SD via the em-
bedding Ω in (2.5) depend on the triple (p, a, b).

Example 2.8. For the case D = 6, we can take (p, a, b) = (5, 2, 5). The
quadratic form is given by

(2.8) ∆6(m,n) = 5m2 + 48mn+ 20n2.

For the case D = 10, we can take (p, a, b) = (13, 3, 7). The quadratic
form is given by

(2.9) ∆10(m,n) = 13m2 + 120mn+ 280n2.

For the case D = 14, we can take (p, a, b) = (5, 1, 3). The quadratic form
is given by

(2.10) ∆14(m,n) = 5m2 + 56mn+ 168n2.

For the case D = 15, we can take (p, a, b) = (53, 22, 137). The quadratic
form is given by

∆15(m,n) = 53m2 + 1320mn+ 8220n2.(2.11)

Due to Theorem 2.6 (2), we have the following results.

Example 2.9. The image of the Shimura curves S6 attached to (p, a, b) =
(5, 2, 5) and S10 attached to (p, a, b) = (13, 3, 7) are contained in the in-
tersection H5 ∩ H8 of the Humbert surfaces because 5 = ∆6(5,−1) =
∆10(5,−1) and 8 = ∆6(4,−1) = ∆10(4,−1).
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Example 2.10. The image of the Shimura curves S6 attached to (p, a, b) =
(5, 2, 5), S14 attached to (p, a, b) = (5, 1, 3) and S15 attached to (p, a, b) =
(53, 22, 137) are contained in the intersection H5 ∩ H12 of the Humbert
surfaces because 5 = ∆6(5,−1) = ∆15(25,−2) = ∆14(1, 0) and 12 =
∆6(6,−1) = ∆15(12,−1) = ∆14(6,−1).

Example 2.11. The image of the Shimura curves S6 attached to (p, a, b) =
(5, 2, 5) and S14 attached to (p, a, b) = (5, 1, 3) are contained in the in-
tersection H5 ∩ H21 of the Humbert surfaces because 5 = ∆6(5,−1) =
∆15(25,−2) = ∆14(1, 0) and 21 = ∆6(6,−1) = ∆14(7,−1). However, the
Shimura curve S15 is not contained inH5∩H21 because 21 is not represented
by ∆15(m,n) with m,n ∈ Z.

3. The embedding F ↪→ FCD
3.1. The lattice polarized K3 surfaces. A K3 surface S is a compact
complex surface such that the canonical bundleKS = 0 andH1(S,OS) = 0.

By the canonical cup product and the Poincaré duality, the homology
group H2(S,Z) has a lattice structure. It is well known that the lattice
H2(S,Z) is isometric to the even unimodular lattice E8(−1) ⊕ E8(−1) ⊕
U⊕U⊕U , where E8(−1) is the negative definite even unimodular lattice of
type E8 and U is the parabolic lattice of rank 2. Let NS(S) be the Néron–
Severi lattice of aK3 surface S. This is a sublattice ofH2(S,Z) generated by
the divisors on S. The orthogonal complement Tr(S) = NS(S)⊥ in H2(S,Z)
is called the transcendental lattice of S.

Let S be a K3 surface and M be a lattice. If we have a primitive lattice
embedding ι : M → NS(S), the pair (S, ι) is called an M -polarized K3
surface. Let (S1, ι1) and (S2, ι2) be M -polarized K3 surfaces. If there exist
an isomorphism S1 → S2 of K3 surfaces such that ι1 = f∗ ◦ ι2, (S1, ι1) and
(S2, ι2) are isomorphic as M -polarized K3 surfaces. From now on, we often
omit the primitive lattice embedding ι.

Remark 3.1. When we consider the moduli space and the period mapping
of lattice polarized K3 surfaces, we should pay attention to the ampleness
of lattice polarized K3 surfaces (see [6]). However, it is safe to apply the
Torelli theorem to our cases. See Remark 3.5 and 3.9.

3.2. The icosahedral invariants. Klein [16] studied the action of the
icosahedral group on P2(C) = Proj(C[ζ0, ζ1, ζ2]). He obtained a system of
generators A,B,C,D ∈ C[ζ0, ζ1, ζ2] of ring of icosahedral invariants. The A
(resp.B,C,D) is a homogeneous polynomial of weight 2 (resp. 6, 10, 15) and
the ring is given by C[A : B : C : D]/R(A,B,C,D), where R(A,B,C,D) is
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the Klein’s icosahedral relation

(3.1) R(A,B,C,D) = 144D2 − (−1728B5 + 720ACB3 − 80A2C2B

+ 64A3(5B2 − AC)2 + C3).

The Hilbert modular group PSL(2,O5) acts on the product H × H of
upper half planes. We consider the symmetric Hilbert modular surface
〈PSL(2,O5), τ〉\(H × H), where τ is the involution given by (z1, z2) 7→
(z2, z1).

Hirzebruch obtained the following result.

Proposition 3.2 ([14]).
(1) The ring of symmetric modular forms for PSL(2,O5) is isomorphic

to the ring C[A,B,C,D]/R(A,B,C,D). Here, A (resp. B,C,D) cor-
responds to a symmetric modular form for PSL(2,O5) of weight 2
(resp. 6, 10, 15).

(2) The Hilbert modular surface 〈PSL(2,O5), τ〉\(H × H) has a com-
pactification by adding one cusp (A : B : C) = (1 : 0 : 0). This
compactification is the weighted projective plane P(1 : 3 : 5) =
Proj(C[A,B,C]).

Set

X = B

A3 , Y = C

A5 .(3.2)

Then, the pair (X,Y ) gives an affine coordinate system of {A 6= 0} ⊂
P(1 : 3 : 5).

Remark 3.3. The symmetric Hilbert modular surface

〈PSL(2,O5), τ〉\(H×H)

coincides with the Humbert surface H5.

3.3. The family F = {S(A : B : C)} of K3 surfaces. In this sub-
section, we survey the results of [22].

For (A : B : C) ∈ P(1 : 3 : 5) − {(1 : 0 : 0)}, we have the elliptic K3
surface

S(A : B : C) : z2 = x3 − 4(4y3 − 5Ay2)x2 + 20By3x+ Cy4.(3.3)

The family F = {S(A : B : C) | (A : B : C) ∈ P(1 : 3 : 5)− {(1 : 0 : 0)}}
is studied in [22]. By a detailed observation, we can prove the following
proposition.
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Proposition 3.4 ([22, Section 2]).
(1) For generic (A : B : C) ∈ P(1 : 3 : 5) − {(1 : 0 : 0)}, the Néron–

Severi lattice NS(S(A : B : C)) is given by the intersection matrix

E8(−1) ⊕ E8(−1) ⊕
(

2 1
1 −2

)
= M5 and the transcendental lattice

Tr(S(A :B :C)) is given by the intersection matrix U⊕
(

2 1
1 −2

)
=A5.

(2) The family F = {S(A : B : C)} gives the isomorphy classes of
M5-polarized K3 surfaces. Especially, S(A1 : B1 : C1) and S(A2 :
B2 : C2) are isomorphic as M5-polarized K3 surfaces if and only if
(A1 : B1 : C1) = (A2 : B2 : C2) in P(1 : 3 : 5).

The period domain for the family F is given by the Hermitian symmetric
space D = {ξ ∈ P3(C) | tξA5ξ = 0, tξA5ξ > 0} of type IV. The space
D has two connected components D+ and D−. We have the multivalued
period mapping Φ : P(1 : 3 : 5) − {(1 : 0 : 0)} → D+. There exists a
biholomorphic mapping j : H × H → D+. Then, we have the multivalued
mapping j−1 ◦ Φ : P(1 : 3 : 5)− {(1 : 0 : 0)} → H×H, that is given by
(3.4)

(A : B : C) 7→ (z1, z2) =
(
−
∫

Γ3
ω + 1−

√
5

2
∫

Γ4
ω∫

Γ2
ω

,−
∫

Γ3
ω + 1+

√
5

2
∫

Γ4
ω∫

Γ2
ω

)
,

where ω is the unique holomorphic 2-form up to a constant factor and
Γ1, · · · ,Γ4 are certain 2-cycles on S(A : B : C) (for detail, see [22] and [23]).

Remark 3.5. In [22], the primitive lattice embedding ι : M5 ↪→ NS(S(A :
B : C)) of the M5-polarized K3 surfaces is given explicitly. Especially, the
image ι(M5) is given by effective divisors of S(A : B : C). In fact, it assures
an ampleness of lattice polarized K3 surfaces and we can apply the Torelli
theorem to our period mapping for F safely. For detailed argument, see [22,
Section 2.2].

LetS2 be the Siegel upper half plane consisting of 2×2 complex matrices.
The mapping µ5 : H×H→ S2 given by
(3.5)

(z1, z2) 7→ 1
2
√

5

(
(1 +

√
5)z1 − (1−

√
5)z2 2(z1 − z2)

2(z1 − z2) (−1 +
√

5)z1 + (1 +
√

5)z2

)
gives a modular embedding (see the following diagram).

H×H µ5−−−−→ S2

〈PSL(2,O5),τ〉
y ySp(4,Z)

H×H −−−−→
µ5

S2
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j 0 1 2 3 4 5 6 7 8 9
ta (0, 0) (1, 1) (0, 0) (1, 1) (0, 1) (1, 0) (0, 0) (1, 0) (0, 0) (0, 1)
tb (0, 0) (0, 0) (1, 1) (1, 1) (0, 0) (0, 0) (0, 1) (0, 1) (1, 0) (1, 0)

Table 3.1. The correspondence between j and (a, b).

Moreover, µ5 in (3.5) gives a parametrization of the surface N5 in Defini-
tion 2.1:

(3.6) N5 =
{(

τ1 τ2
τ2 τ3

)
∈ S2

∣∣∣∣−τ1 + τ2 + τ3 = 0
}
.

For Ω ∈ S2 and a, b ∈ {0, 1}2 with tab ≡ 0 mod 2, set ϑ(Ω; a, b) =∑
g∈Z2 exp

(
π
√
−1
(
t
(
g + 1

2a
)
Ω
(
g + 1

2a
)

+ tgb
))
. For j ∈ {0, 1, · · · , 9}, we

set θj(z1, z2) = ϑ(µ5(z1, z2); a, b), where the correspondence between j and
(a, b) is given by Table 3.1.

Let a ∈ Z and j1, · · · , jr ∈ {0, · · · , 9}. We set θaj1,··· ,jr = θaj1 · · · θ
a
jr . The

following g2 (resp. s6, s10) is a symmetric Hilbert modular form of weight 2
(resp. 6, 10) for Q(

√
5) (see Müller [20]): g2 = θ0145− θ1279− θ3478 + θ0268 +

θ3569, s6 = 2−8(θ2
012478 + θ2

012569 + θ2
034568 + θ2

236789 + θ2
134579), s10 = s2

5 =
2−12θ2

0123456789.

Proposition 3.6 ([22, Theorem 4.1]). Using the coordinates (X,Y )of (3.2),
the inverse correspondence (z1, z2) 7→ (X(z1, z2), Y (z1, z2)) of the period
mapping (3.4) for F has the following theta expression

X(z1, z2) = 25 · 52 · s6(z1, z2)
g3

2(z1, z2)
, Y (z1, z2) = 210 · 55 · s10(z1, z2)

g5
2(z1, z2)

.(3.7)

Moreover, X and Y give a system of generators of the field of symmetric
Hilbert modular functions for Q(

√
5).

We call the divisor � = {(z1, z2) ∈ H×H | z1 = z2} the diagonal. On the
diagonal �, it holds

X(z, z) = 25
27

1
J(z) , Y (z, z) = 0.(3.8)

3.4. The family FCD = {SCD(α, β, γ, δ)} of K3 surfaces. In [4]
and [25], the family FCD = {SCD(α, β, γ, δ) | (α : β : γ : δ) ∈ P(2 : 3 : 5 :
6)− {γ = δ = 0}} of K3 surfaces is studied in detail, where

SCD(α : β : γ : δ) : y2 = x3 + (−3αt4 − γt5)x+ (t5 − 2βt6 + δt7).(3.9)

The above equation gives the structure of an elliptic surface (x, y, t) 7→ t
with the singular fibres II∗ + 5I1 + III∗.
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Remark 3.7. In this paper, we use the notation FCD and SCD, since the
surface (3.9) appears in the paper of Clingher and Doran [4]. On the other
hand, Kumar [18] independently studied elliptic K3 surfaces with the same
singular fibres. So, we need to recall Kumar’s contribution.
Proposition 3.8 ([25, Section 2 and 3]).

(1) If an elliptic K3 surface S with the elliptic fibration (x, y, t) 7→ t has
the singular fibres of type II∗ at t = 0, III∗ at t = ∞ and other
five fibres of type I1, then S is given by the Weierstrass equation
in (3.9).

(2) For generic (α : β : γ : δ) ∈ P(2 : 3 : 5 : 6)−{γ = δ = 0}, the Néron–
Severi lattice NS(SCD(α : β : γ : δ) is given by the intersection
matrix E8(−1) ⊕ E7(−1) ⊕ U = M0 and the transcendental lattice
Tr(SCD(α : β : γ : δ)) is given by the intersection matrix U ⊕ U ⊕
〈−2〉 = A0.

(3) The family FCD = {SCD(α : β : γ : δ)} gives the isomorphism
classes of M0-polarized K3 surfaces. Especially, SCD(α1 : β1 : γ1 :
δ1) and SCD(α2 : β2 : γ2 : δ2) are isomorphic as M0-polarized K3
surfaces if and only if (α1 : β1 : γ1 : δ1) = (α2 : β2 : γ2 : δ2) in
P(2 : 3 : 5 : 6).

Let D0 = {ξ ∈ P4(C) | tξA0ξ = 0, tξA0ξ > 0}. The period domain
for the family FCD is given by the quotient space PO(A0,Z)\D0, where
PO(A0,Z) = {M ∈ GL(4,Z) | tMA0M = A0}. In fact, there exists a
holomorphic mapping D0 → S2 such that this mapping induces the iso-
morphism PO(A0,Z)\D0 ' Sp(4,Z)\S2 = A2. The transcendental lattice
Tr(SCD(α : β : γ : δ)) is Hodge isometric to the transcendental lattice
Tr(A) of a generic principally polarized abelian surface and the family FCD
gives the same variations of Hodge structures of weight 2 with the family
of principally polarized abelian surfaces (see [25, Section 3]).
Remark 3.9. In [25, Section3], the primitive lattice embedding ι : M0 ↪→
NS(SCD(α : β : γ : δ)) of M0-polarized K3 surfaces is attained by taking
appropriate effective divisors of SCD(α : β : γ : δ). This argument guaran-
tees an ampleness of lattice polarized K3 surfaces and it is safe to apply
the Torelli theorem for lattice polarized K3 surface to our family FCD.

Let M2 be the moduli space of genus 2 curves. Let P(1 : 2 : 3 : 5) =
{(ζ1 : ζ2 : ζ3 : ζ5)} be the weighted projective space. It is well-known that
M2 = P(1 : 2 : 3 : 5) − {ζ5 = 0}. In fact, by the Igusa–Clebsch invariants
I2, I4, I6, I10 of degree 2, 4, 6, 10 for a genus 2 curve, (I2 : I4 : I6 : I10) gives a
well-defined point of the moduli spaceM2. We note that the moduli space
M2 is a Zariski open set of the moduli space A2 of principally polarized
abelian surfaces (M2 is the complement of the divisor given by the points
corresponding to the product of elliptic curves).
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By a study of ellipticK3 surfaces, we can prove the following proposition.

Proposition 3.10 ([18], [4], see also [25]). The point (I2 : I4 : I6 : I10) ∈
M2 = P(1 : 2 : 3 : 5) − {ζ5 = 0} corresponds to the point (α : β : γ :
δ) ∈ P(2 : 3 : 5 : 6) − {γ = δ = 0} of the moduli space of M0-polarized K3
surfaces by the following birational transformation:

α = 1
9I4, β = 1

27(−I2I4 + 3I6), γ = 8I10, δ = 2
3I2I10.(3.10)

The Humbert surface H5 is a subvariety of the moduli space A2. Hence,
the defining equation of H5 can be described by the equation in (α : β :
γ : δ) ∈ P(2 : 3 : 5 : 6). By an observation of the elliptic fibration given
by (3.9), we can prove the following theorem. Especially, the equation (3.11)
shall give the defining equation of H5.

Proposition 3.11 ([25, Theorem 4.4]).
(1) If and only if the equation

(3.11) (−α3 − β2 + δ)2 − 4α(αβ − γ)2 = 0

holds, there exists a non trivial section s5 of {SCD(α : β : γ : δ)} as
illustrated in Figure 3.1.

(2) If the modular equation (3.11) holds, the Néron–Severi lattice of the
K3 surface SCD(α : β : γ : δ) is generically given by the intersection
matrix M5.

We call the equation (3.11) the modular equation for ∆ = 5.

�O�

s5

Figure 3.1. The section s5.

Remark 3.12. The modular equation (3.11) for ∆ = 5 is much simpler
than modular equations for other discriminants. For example, the modular
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equation for ∆ = 8 is given by

1024α15 − 5120α12β2 + 10240α9β4 − 10240α6β6 + 5120α3β8 − 1024β10
(3.12)

− 941056α11βγ + 1053696α8β3γ + 715776α5β5γ − 828416α2β7γ

− 7556464α10γ2 + 131492384α7β2γ2 + 39076880α4β4γ2 + 13934400αβ6γ2

+ 1491324088α6βγ3 − 918848440α3β3γ3 − 36968000β5γ3

+ 13611473901α5γ4 − 718342500α2β2γ4 + 9079601250αβγ5

+ 7737809375γ6 − 343808α12δ − 647168α9β2δ + 2234880α6β4δ

− 1153024α3β6δ − 90880β8δ + 2442144α8βγδ − 86206272α5β3γδ

+ 12985248α2β5γδ − 1669045416α7γ2δ − 1449171160α4β2γ2δ

+ 268484800αβ4γ2δ − 157452560α3βγ3δ − 772939000β3γ3δ

− 15745060125α2γ4δ + 29370256α9δ2 − 56832480α6β2δ2

+ 37166352α3β4δ2 − 2626240β6δ2 + 1230170496α5βγδ2

− 155485248α2β3γδ2 − 27876720α4γ2δ2 + 2388102200αβ2γ2δ2

− 2315093000βγ3δ2 − 86058160α6δ3 + 3605888α3β2δ3 − 22815760β4δ3

− 1231671584α2βγδ3 + 1704478600αγ2δ3 + 85375664α3δ4

+ 53878880β2δ4 − 28344976δ5 = 0.

We can check that for a generic (α, β, γ, δ) satisfying (3.12), the transcen-

dental lattice is given by U ⊕
(

2 2
2 −2

)
. So, (3.12) gives a counterpart of

the equation (3.11).

3.5. The embedding Ψ5 : P(1 : 3 : 5) ↪→ P(2 : 3 : 5 : 6). The family
ofM5-polarizedK3 surfaces is a subfamily of the family ofM0-polarizedK3
surface. Therefore, Proposition 3.4, 3.8 and 3.11 imply that the family F =
{S(A : B : C)} is a subfamily of the family FCD = {SCD(α : β : γ : δ)}.
Moreover, together with Remark 3.3, the modular equation (3.11) gives
the defining equation of the Humbert surface H5. In this subsection, we
realize the embedding F ↪→ FCD explicitly. This is given by the embedding
Ψ5 : P(1 : 3 : 5) ↪→ P(2 : 3 : 5 : 6) of varieties.

Since the modular equation (3.11) for ∆ = 5 is very simple and the
coordinates A,B and C have the explicit theta expressions (3.7) via the
period mapping for the family F , we can study the pull-back Ψ∗5(V ) of
a variety V ⊂ P(2 : 3 : 5 : 6) quite effectively. Especially, in Section 5
and 6, we shall consider the pull-back Ψ∗5(SD) of the Shimura curve SD for
D = 6, 10, 14 and 15 in P(2 : 3 : 5 : 6).
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Lemma 3.13. The elliptic K3 surface S(A : B : C) is birationally equiva-
lent to the elliptic K3 surface

(3.13) y2
0 = s3 +

(
−25

12A
2u4 − 1

32Cu
5
)
s

+
(
u5 +

(125
108A

3 − 5
4B

)
u6 +

(25
64B

2 − 5
96AC

)
u7
)
.

The elliptic fibration π : (s, u, y0) 7→ u given by (3.13) has singular fibres
π−1(0) of type II∗, π−1(∞) of type III∗ and other five singular fibres of
type I1.

Proof. First, by the correspondence

x = x1
16t , y = − x1

16t2 , z = x1y1
256t4 ,

the surface S(A : B : C) in (3.3) is transformed to
y2

1 = x1(x2
1 + (20At2 − 20Bt+ C)x+ 16t5).(3.14)

The elliptic surface given by (3.14) has the singular fibres of type I10 +
5I1 + III∗.

Next, by the birational transformation

x1 = C4u5
0

x4
2
, y1 =

√
C9u5

0
x6

2
y2, t = Cu0

x2
,(3.15)

we have
y2

2 = x4
2 + (16− 20Bu0)x3

2 + 20ACu2
0x2 + Cu5

0.(3.16)
The equation (3.16) gives a double covering of a polynomial of degree 4 in
x2. According to Section 3.1 of [1], such a polynomial can be transformed
to a Weierstrass equation. In our case, putting

x2 = 6s1(−4 + 5Bu0)− 60ACu2
0(−4 + 5Bu0) +

√
6y3

6(−96 + s1 + 240Bu0 − 150B2u2
0 + 20ACu2

0)
,

y2 = 48 + s1 − 120Bu0 + 75B2u2
0 − 10ACu2

0
3

−
(27(2(−4 + 5Bu0)(16− 40Bu0 + 25B2u2

0 − 5ACu2
0) + y3

3
√

6)2)
3(−96 + s1 + 240Bu0 − 150B2u2

0 + 20ACu2
0)2 ,

we have the Weierstrass equation
y2

3 = polynomial in s1 of degree 3.(3.17)
Put

s1 = 3Cs, y3 =
√

27C3y0, u0 = u

2 ,

to (3.17). Then, we have (3.13). �
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Remark 3.14. The transformation in (3.15) gives an example of 2-neighbor
step, that is a method to find a new elliptic fibration. By (3.15), we have
u0 = x

t4
. The new parameter u0 has a pole of order 4 at t = 0. This implies

that we have a singular fibre of type III∗ at u0 =∞ (Figure 3.2).
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Figure 3.2. 2-neiborgh step in (3.15)

Remark 3.15. The section s5 in Proposition 3.11(1) has the explicit form
t 7→ (x(t), y(t), t),(3.18)

where x(t) = 32
Y + 40X

Y t + 5(15X2−2Y )
6Y t2 and y(t) = 128

√
2

Y 3/2 + 240
√

2X
Y 3/2 t −

10
√

2(−15X2+Y )
Y 3/2 t2 − 25(−5X3+XY )

2
√

2Y 3/2 t3.

Theorem 3.16. The point (α : β : γ : δ) ∈ P(2 : 3 : 5 : 6) satisfies
the modular equation (3.11) if and only if the point (α : β : γ : δ) is in
the image of the embedding Ψ5 : P(1 : 3 : 5) → P(2 : 3 : 5 : 6) given by
(A : B : C) 7→ (α : β : γ : δ) = (α5(A : B : C) : β5(A : B : C) : γ5(A : B :
C) : δ5(A : B : C)), where

α5(A : B : C) = 25
36A

2,

β5(A : B : C) = 1
2
(
− 125

108A
3 + 5

4B
)
,

γ5(A : B : C) = 1
32C,

δ5(A : B : C) = 25
64B

2 − 5
96AC.

(3.19)

Proof. According to Proposition 3.11, if (α : β : γ : δ) ∈ P(2 : 3 : 5 : 6)
satisfies the modular equation (3.11), then the Néron–Severi lattice
NS(S(α : β : γ : δ)) is generically given by the intersection matrix M5.

On the other hand, a family of the isomorphism classes of M5-marked
K3 surfaces is given by F . By Lemma 3.13, S(A : B : C) is birationally
equivalent to the surface given by (3.13) with the section (3.18). Therefore,
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the Weierstrass equation (3.13) induces an embedding F ↪→ FCD of the
family of ellipticK3 surfaces with the singular fibers of type II∗+5I1+III∗.
Together with Proposition 3.8, we have (3.19) by comparing the coefficients
of (3.9) and (3.13). �

Remark 3.17. We can check that any point of the image Ψ5(P(1 : 3 : 5))
satisfies the modular equation (3.11).

4. The family F∆
EK of K3 surfaces

Elkies and Kumar [9] obtained rational models of Hilbert modular sur-
faces. Especially, in their argument, they used parametrizations of the Hum-
bert surfaces H∆ for fundamental discriminants ∆ such that 1 < ∆ < 100.
Their method was the following. They consider a family, that is called
F∆
EK in this paper, of elliptic K3 surfaces with two complex parameters.

A generic member of F∆
EK has a suitable transcendental lattice and the

moduli space of F∆
EK is birationally equivalent to the Humbert surface H∆.

Moreover, the family F∆
EK can be regarded as a subfamily of FCD. It fol-

lows that the two complex parameters of FCD give a parametrization χ∆
of H∆.

In this paper, we shall use the parametrization χ8 (resp. χ12, χ21) for
the Humbert surface H8 (resp. H12,H21). We survey their results in this
section.

However, we remark that the explicit forms of the parametrization χ∆
appeared in the paper [9] only for the case ∆ = 5 and 8. Then, we need to
calculate the explicit forms of χ12 and χ21 from the families F12

EK and F21
EK

(see Section 4.3 and 4.4).

Remark 4.1. The choice of the parametrization of the Humbert surface
H∆ is not unique. In fact, the parametrization χ∆ due to Elkies and Kumar
depends on the choice of an elliptic fibration of a generic member of F∆

EK .
To the best of the author’s knowledge, it is not easy to study modular
properties of the parametrization χ∆. For example, it seems highly non
trivial problem to obtain an explicit expression of the parametrization of
χ∆ via the Hilbert modular forms for Q(

√
∆). See Remark 4.2 also.

4.1. The case of discriminant 5. Before we consider the cases ∆ =
8, 12, 21, let us see the case ∆ = 5.

In [9, Section 6], the family F5
EK of K3 surfaces is studied. A generic

member of F5
EK is given by the defining equation

y2 = x3 + 1
4 t

3(−3g2t+ 4)x− 1
4 t

5(4h2t2 + (4h+ g3)t+ (4g + 1)),

where g and h are two complex parameters.
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Using this family, Elkies and Kumar obtained a parametrization of the
Humbert surface H5. In [9], H5 is realized as a surface in the moduli space
M2 = Proj(C[I2, I4, I6, I10]) by the parametrization

I2 = 6(4g + 1), I4 = 9g2, I6 = 9(4h+ 9g3 + 2g2), I10 = 4h2.

Together with (3.10), we obtain the mapping χ5 : P(1 : 2 : 5)→ P(2 : 3 : 5 : 6)
given by (k : g : h) 7→ (α′5(k : g : h) : β′5(k : g : h) : γ′5(k : g : h) : δ′5(k : g : h)),
where α′5(k : g : h) = g2, β′5(k : g : h) = g3 + 4hk, γ′5(k : g : h) = 32h2 and
δ′5(k : g : h) = 16h2(4g + k2). The mapping χ5 gives a parametrization of
the Humbert surface H5. Any point of the image of χ5 satisfies the modular
equation (3.11).

Remark 4.2. The above χ5 is a parametrization different from Ψ5 : P(1 :
3 : 5) ↪→ P(2 : 3 : 5 : 6) in Theorem 3.16. In Section 5 and 6, we shall use
only Ψ5. The parametrization Ψ5 has good modular properties and is more
convenient than χ5 for our purpose. For example, the weighted projective
space P(1 : 3 : 5) = Proj(C[A,B,C]) is a canonical compactification of the
Hilbert modular surface (see Section 3.2) and the coordinates A,B and C
have an expression by Hilbert modular forms (see Proposition 3.6).

4.2. The case of discriminant 8. In [9, Section 7], the family F8
EK of

K3 surfaces is studied. A generic member of F8
EK is given by the defining

equation

y2 = x3 + t((2r + 1)t+ r)x2 + 2rst4(t+ 1)x+ rst7

where r and s are two complex parameters. This Weierstrass equation gives
the elliptic fibration (x, y, t) 7→ t with the singular fibres of type III∗ and I∗5 .
A generic member of F8

EK admits another elliptic fibration with the singular
fibres of type II∗ + 5I1 + III∗ and we regard F8

EK as a subfamily of FCD
(see Proposition 3.8). Thus, Elkies and Kumar gave the correspondence{

I2 = −4(3s+ 8r − 2), I4 = 4(9rs+ 4r2 + 4r + 1), I10 = −8s2r3,

I6 = −4(36rs2 + 94r2s− 35rs+ 4s+ 48r3 + 40r2 + 4r − 2).

Together with (3.10), we have the following correspondence χ8 : P2(C) →
P(2 : 3 : 5 : 6) given by (q : r : s) 7→ (α8(r : s : q) : β8(r : s : q) :
γ8(r : s : q) : δ8(r : s : q)) where
(4.1)

α8(r : s : q) = 4
9(q2 + 4qr + 4r2 + 9rs),

β8(r : s : q) = 1
27

(
16(−2q + 8r + 3s)(q2 + 4qr + 4r2 + 9rs)

− 12(−2q3 + 4q2r + 40qr2 + 48r3 + 4q2s− 35qrs+ 94r2s+ 36rs2)
)
,

γ8(r : s : q) = −64r3s2, δ8(r : s : q) = 64
3 r

3s2(−2q + 8r + 3s).
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The correspondence χ8 gives a parametrization of the Humbert surface
H8. We shall use χ8 in Section 5.

4.3. The case of discriminant 12. In [9, Section 8], Elkies and Kumar
considered the elliptic K3 surfaces given by the following equation

(4.2) y2 = x3 + ((1− f2)(1− t) + t)tx2 + 2et3(t− 1)x+ e2(t− 1)2t5.

Here, e and f are two complex parameters. The Weierstrass equation (4.2)
defines the elliptic fibration (x, y, t) 7→ t. For a generic point (e, f), the
equation (4.2) gives an elliptic surface with singular fibres I∗2 , I3 and II∗ at
t = 0, 1 and ∞, respectively.

Proposition 4.3. The K3 surface given by (4.2) is birationally equivalent
to the elliptic K3 surface given by the Weierstrass equation

(4.3) y2
1 = x3

1 +
(1

3(−9e+ 15ef − f4)u4 + (−e3(1 + f))u5
)
x

+
(
u5 + 1

27(−54e2 − 81ef2 + 63ef3 + 2f6)u6

+ 1
3e

3(3 + 3e+ 3f − 2f2 − 2f3)u7
)
,

with singular fibres of type II∗ + 5I1 + III∗.

Proof. Putting

x = (t− 1)t3
( e

(f − 1)t + u1
)
, y = t3(t− 1)y0(4.4)

to (4.2), we obtain an equation in the form

(4.5) y2
0 = a polynomial in t of degree4.

Applying the canonical method of Section 3.1 in [1] to (4.5), we have an
equation in the form

y2
0 = 4x3

0 − I0(u1)x0 − J0(u1).(4.6)

By the birational transformation x0 = e6x1
4(−1+f)2 , u1 = − e3u

−1+f , y0 = e9y1
4(−1+f)3

to (4.6), we have (4.3). �

Remark 4.4. The birational transformation (4.4) gives an example of 2-
neighbor step to obtain the singular fibre of type III∗. See Figure 4.1.
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Figure 4.1. 2-neiborgh step in (4.4)

From (3.9) and (4.3), we obtain the following proposition.

Proposition 4.5. The mapping χ12 : P(2 : 1 : 1) → P(2 : 3 : 5 : 6) =
P(4 : 6 : 10 : 12) given by (e : f : g) 7→ (α12(e : f : g) : β12(e : f : g) :
γ12(e : f : g) : δ12(e : f : g)) where

(4.7)



α12(e : f : g) = 1
9(f4 − 15efg + 9eg2),

β12(e : f : g) = 1
54f(−2f6 − 63ef3g + 54e2g2 + 81ef2g2),

γ12(e : f : g) = e3g3(f + g),
δ12(e : f : g) = 1

3e
3g3(−2f3 + 3eg − 2f2g + 3fg2 + 3g3),

gives a parametrization of the Humbert surface H12.

4.4. The case of discriminant 21. In [9, Section 11], they studied the
elliptic K3 surface given by the Weierstrass equation

(4.8) y2 = x3 + (a0 + a1t+ a2t
2)x2

+ 2t2(t− 1)(b0 + b1t)x+ t4(t− 1)2(c0 + c1t),

where

(4.9)


a0 = 1, a1 = −r2 + 2rs− 1, a2 = (r − s)2,

b0 = (r2 − 1)(s− r)2, b1 = (r2 − 1)(s− r)2(rs− 1),
c0 = (r2 − 1)2(s− r)4, c1 = (r2 − 1)3(s− r)4.

Here, r and s are two complex parameters. For generic (r, s), an elliptic
surface given by (4.8) has singular fibers I7, I3 and II∗ at t = 0, 1 and ∞
respectively.
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Proposition 4.6. The K3 surface given by (4.8) is birationally equivalent
to the elliptic K3 surface given by the Weierstrass equation

(4.10) y2
1 = x3

1 +
(
− (−1 + r)6(1 + r)4(r − s)u5

+ 1
3(−9− 30r − 7r2 + 30r3 + 15r4

+ 30s+ 26rs− 30r2s− 24r3s− s2)u4
)
x1

+ u5 − 2
27(r − s)(189 + 252r − 280r2 − 441r3

+ 63r4 + 189r5 + 27r6 − 63s
− 70rs+ 63r2s+ 72r3s− s2)u6

+ 1
3(−1 + r)6(1 + r)4(3− 5r2 + 3r4 + 6s+ 10rs

− 6r3s− 2s2 + 3r2s2)u7.

with singular fibres of type II∗ + 5I1 + III∗.

Proof. By the birational transformation given by
(4.11)

x = (−1 + r2)(r − s)2(−1 + t)t2x0,

y = 1
2(−1 + r2)(r − s)2(−1 + t)t2

×
(
2t3u0 + 2(1 + x0)− t(1 + r2(−1 + x0) + x0 − 2rsx0)

− t2
(
1 + 2u0 − r2(−1 + x0) + x0 − 2sx0 + 2r(−1 + sx0)

))
,

the equation (4.8) is changed to an equation in the form

(4.12) a0 + a1x0 + a2t+ a3x
2
0 + a4x0t+ a5t

2

+ a6x
3 + a7x

2t+ a8xt
2 + a9t

3 = 0.

Using the method of Section 3.2 in [1], the equation (4.12) is transformed
to the Weierstrass equation in the form

y2
0 = 4x3

0 − 108S(u0)x0 − 27T (u0).(4.13)

Then, x0 = 1
4(−1+r)10(1+r)6(r−s)3x1, y0 = 1

4(−1+r)15(1+r)9√(r − s)9y1
and u0 = 1

2(−1 + r)5(1 + r)3(r − s)u1 to (4.13), we have (4.10). �

Remark 4.7. The birational transformation (4.11) gives an example of
3-neighbor step to obtain the singular fibre of type III∗. See Figure 4.2.

Setting s = 1 + r1 + r1(2+r1)
s1

, r = 1 + r1 and comparing the coefficients
of (3.9) and (4.10), we can prove the following proposition.
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Figure 4.2. 3-neiborgh step for (4.11)

Proposition 4.8. The mapping χ21 : P(1 : 1 : 2)→ P(2 : 3 : 5 : 6) = P(4 :
6 : 10 : 12) given by (q1 : r1 : s1) 7→ (α21(q1 : r1 : s1) : β21(q1 : r1 : s1) :
γ21(q1 : r1 : s1) : δ21(q1 : r1 : s1)), where

(4.14)



α21(q1 : r1 : s1) = 1
9(q4

1 + 54q2
1s1 + 24q1r1s1 + 9s2

1),
β21(q1 : r1 : s1) = 1

27(q6
1 − 135q4

1s1 − 72q3
1r1s1 − 405q2

1s
2
1

− 243q1r1s
2
1 − 27r2

1s
2
1),

γ21(q1 : r1 : s1) = −r2
1s

4
1,

δ21(q1 : r1 : s1) = 1
3s

4
1(q2

1r
2
1 + 6q1r

3
1 + 3r4

1 + 6q1r1s1 + 3s2
1).

gives a parametrization of the Humbert surface H21.

5. The Shimura curves of discriminant 6 and 10 in P(1 : 3 : 5)

5.1. The Shimura curves Ψ∗5(S6) and Ψ∗5(S10). Let us recall that
the Humbert surface H∆ of discriminant ∆ is a surface in the Igusa 3-fold
A2. Moreover, A2 is a Zariski open set of the weighted projective space
P(2 : 3 : 5 : 6) = Proj(C[α : β : γ : δ]). Hence, we can regard the Humbert
surface H∆ as a divisor in P(2 : 3 : 5 : 6). Especially, Theorem 3.16 says
that the Humbert surface H5 ⊂ A2 is parametrized by (A : B : C) ∈
P(1 : 3 : 5) ' 〈PSL(2,O5), τ〉\(H×H) via the embedding Ψ5 : P(1 : 3 :
5) ↪→ P(2 : 3 : 5 : 6). On the other hand, the Humbert surface H8 ⊂ A2
is parametrized by χ8 (see Section 4.2). The intersection H5 ∩ H8 of two
Humbert surfaces is an analytic subset in A2. Let us consider the pull-back
Ψ∗5(H5 ∩H8), that is a curve in P(1 : 3 : 5).
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Theorem 5.1. The divisor Ψ∗5(H5 ∩ H8) in the weighted projective space
P(1 : 3 : 5) = Proj(C[A : B : C]) is given by the defining equation

(A5 − 5A2B + C)(5.1)
× (3125A5 − 3375A2B + 243C)
× (38400000000000A9B2 + 120528000000000A6B3B4

− 4100625000000A3 − 184528125000000B5

+ 2560000000000A10C + 6998400000000A7BC

+ 34698942000000A4B2C + 42539883750000AB3C

+ 2576431800000A5C2 + 2714325066000A2BC2

+ 146211169851C3) = 0.

Proof. We have the parametrization Ψ5 in (3.19) (resp. χ8 in (4.1)) of the
Humbert surface H5 (resp. H8).

For a generic (α : β : γ : δ) ∈ H5 ∩ H8 ⊂ P(2 : 3 : 5 : 6), there exist
(A : B : C) ∈ P(1 : 3 : 5) and (r : s : q) ∈ P2(C) such that

(5.2)


α = α5(A : B : C) = α8(r, s, q),
β = β5(A : B : C) = β8(r, s, q),
γ = γ5(A : B : C) = γ8(r, s, q),
δ = δ5(A : B : C) = δ8(r, s, q).

We have the polynomial F (5,8)
1 (resp. F (5,8)

2 , F
(5,8)
3 , F

(5,8)
4 ) in C[A : B :

C, r, s, q] of weight 2 (resp. 3, 5, 6) :

(5.3)



F
(5,8)
1 (A,B,C, r, s, q) = α5(A : B : C)− α8(r, s, q),

F
(5,8)
2 (A,B,C, r, s, q) = β5(A : B : C)− β8(r, s, q),

F
(5,8)
3 (A,B,C, r, s, q) = γ5(A : B : C)− γ8(r, s, q),

F
(5,8)
4 (A,B,C, r, s, q) = δ5(A : B : C)− δ8(r, s, q).

We have the weighted homogeneous ideal I = 〈F (5,8)
1 , F

(5,8)
2 , F

(5,8)
3 , F

(5,8)
4 〉 ⊂

C[A,B,C, r, s, q]. Let V (I) the zero set of the ideal I. This is an analytic
subset of P(1 : 3 : 5 : 1 : 1 : 1) = Proj(C[A,B,C, r, s, q]). From (5.2), the
point (A : B : C : r : s : q) ∈ V (I) gives (α : β : γ : δ) ∈ H5 ∩ H8.
Let v : P(1 : 3 : 5 : 1 : 1 : 1) → P(1 : 3 : 5) be the canonical projection
given by (A : B : C : r : s : q) 7→ (A : B : C). The Zariski closure of the
image v(V (I)) corresponds to the zero set V (IS) of the elimination ideal
IS = I ∩ C[A,B,C]. From (5.2) again, it follows that (α5(A : B : C) :
β5(A : B : C) : γ5(A : B : C) : δ5(A : B : C)) ∈ H5 ∩ H8 if and only if
(A : B : C) ∈ V (IS).
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By the theory of Gröbner basis (see [5]) and a computer aided calculation
powered by Mathematica, we can show that the ideal IS is a principal ideal
generated by the polynomial in (5.1). Thus, the theorem is proved. �

Using the explicit expression of the parameters of F in (3.7), let us study
the divisor Ψ∗5(H5 ∩H8) ⊂ P(1 : 3 : 5) in detail. According to Example 2.9,
H5∩H8 contains the Shimura curves S6 and S10 as irreducible components.
We shall give explicit forms of the pull-backs of these two Shimura curves
as divisors in P(1 : 3 : 5). We note that the pull-back Ψ∗5(S6) (resp. Ψ∗5(S10))
is isomorphic to S6 (resp. S10) as varieties because Ψ5 is an embedding of
varieties and S6 and S10 is contained in the image Im(Ψ5). Set

(5.4)



R1 : A5 − 5A2B + C = 0,
R2 : 3125A5 − 3375A2B + 243C = 0,
L1 : 38400000000000A9B2 + 120528000000000A6B3

− 4100625000000A3B4 − 184528125000000B5

+ 2560000000000A10C + 6998400000000A7BC

+ 34698942000000A4B2C + 42539883750000AB3C

+ 2576431800000A5C2 + 2714325066000A2BC2

+ 146211169851C3 = 0.

Lemma 5.2. The curve L1 in (5.4) is neither Ψ∗5(S6) nor Ψ∗5(S10).

Proof. By a direct calculation, the divisor L1 intersects the divisor {C = 0}
at the three points

(A : B : C) = (1 : 0 : 0),
(
1 : 25

27 : 0
)
,
(
1 : − 64

135
)
.(5.5)

On the other hand, the Shimura curves S6,S10 are already compact.
Then, Ψ∗5(S6) and Ψ∗5(S10) never touch the cusp of 〈PSL(2,O5), τ〉\(H ×
H). According to Proposition 3.2(2), the cusp is given by (A : B : C) =
(1 : 0 : 0). So, from (5.5), the curve L1 is neither Ψ∗5(S6) nor Ψ∗5(S10). �

According to [13], we have the quaternion modular embedding Ω̌6 : H→
S2 for D = 6 given by

w 7→ Ω̌6(w) =

 3w
2 −

1
4w −3

√
2w

4 − 1
2 −

√
2

8w

−3
√

2w
4 − 1

2 −
√

2
8w

3w
4 −

1
2 −

1
8w

(5.6)

for w ∈ H.
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Remark 5.3. The modular embedding Ω̌6 is different from the embedding
Ω in Section 2.3. However, as we noted in Remark 2.4, we have the unique
choice of the Shimura curve S6. So, our argument for discriminant 6 is not
dependent on the choice of a quaternion modular embeddings.

For

M =


−1 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 =
(
A B
C D

)
∈ Sp(4,Z).

and w 7→ Ω̌6(w) in (5.6), we have another modular embedding H → S2
given by w 7→ Ω̃6(w) where

Ω̃6(w) = (AΩ̌6(w) +B)(CΩ̌6(w) +D)−1(5.7)

=

−2+
√

2+4w+6(2+
√

2)w2

−1+
√

2+8w+6(1+
√

2)w2

√
2+4w+6

√
2w2

−1+
√

2+8w+6(1+
√

2)w2√
2+4w+6

√
2w2

−1+
√

2+8w+6(1+
√

2)w2
−2+12w2

−1+
√

2+8w+6(1+
√

2)w2

 .
Setting Ω̃6(w) =

(
τ̃1(w) τ̃2(w)
τ̃2(w) τ̃3(w)

)
, it holds

−τ̃1(w) + τ̃2(w) + τ̃3(w) = 0.(5.8)

Especially, Ω̃6 embeds H to N5 in (3.6). Recall that the surface N5 is
parametrized by the Hilbert modular embedding µ5 in (3.5).

Lemma 5.4. Let � be the diagonal, µ5 be the Hilbert modular embedding
given by (3.5) and pr be the canonical projection S2 → Sp(4,Z)\S2 = A2.
Set M6 = pr ◦ µ5(�)(⊂ A2). Then, S6 intersects M6 at only one point
pr ◦ µ5(1 +

√
−1, 1 +

√
−1).

Proof. The embedding w 7→ Ω̃6(w) parametrizes a curve in the surface N5.
The surface N5 is parametrized by (z1, z2) ∈ H×H via µ5. Hence, the set
µ5(�) ∩ Im(Ω̃6) is given by the condition τ̃2(w) = 6

√
2w2 + 4w +

√
2 = 0.

The solution in the upper half plane H of the equation 6
√

2w2+4w+
√

2 = 0
is only

w = 1
3
(√
−1− 1√

2

)
.

By a direct calculation, we can check that

Ω̃6(1
3
(√
−1− 1√

2

)
) = µ5(1 +

√
−1, 1 +

√
−1). �

We note that a point in N5 = Im(µ5) has an expression by the period
mapping for the family F ofM5-marked K3 surfaces (see Section 3.3). The
explicit theta expression (3.7) of the inverse of the period mapping for F
enables us to study the quaternion embedding Ω̃6 given by (5.7) in detail.
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Theorem 5.5. The Shimura curve Ψ∗5(S6) (resp. Ψ∗5(S10)) is given by the
divisor R2 (resp. R1) in (5.4).

Proof. According to Theorem 5.1, the Shimura curves Ψ∗5(S6) and Ψ∗5(S10)
are irreducible components of the union of the curves R1∪R2∪L1. However,
from Lemma 5.2, the curve L1 never give any Shimura curve. According
to (3.2), the (X,Y )-plane gives an affine plane of P(1 : 3 : 5). Due to
Lemma 5.4, the Shimura curve Ψ∗5(S6) passes the point

P0 = (X(1 +
√
−1, 1 +

√
−1), Y (1 +

√
−1, 1 +

√
−1)).

Since we have the formula (3.8),

P0 =
(25

27
1

J(1 +
√
−1)

, 0
)

=
(25

27 , 0
)
∈ (X,Y )− plane.

On the other hand, by a direct observation, the curve R1 does not touch
the point P0 and the curve R2 passes the point P0.

Therefore, the Shimura curve Ψ∗5(S6) is given by the curve R2. The other
curve R1 corresponds to the Shimura curve Ψ∗5(S10). �

In Figure 5.1, the Shimura curves R2 = Ψ∗5(S6), R1 = Ψ∗5(S10) and the
curve coming from Klein’s icosahedral equation

−1728B5 + 720ACB3 − 80A2C2B + 64A3(5B2 − AC)2 + C3 = 0

(see (3.1)).

Figure 5.1. The Shimura curves of discriminant 6 and 10
and the Klein’s icosahedral equation
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5.2. The genus 2 curves of Hashimoto and Murabayashi and the
family Kj of Kummer surfaces. Hashimoto and Murabayashi [13] stud-
ied the moduli space of genus 2 curves and the Shimura curves for discrimi-
nant 6 and 10. In this subsection, let us see the relation between the results
of [13] and Theorem 5.5.

Let C be a Riemann surface of genus 2. The Jacobian variety Jac(C) is
a principally polarized abelian surface. Let T be the involution on Jac(C)
induced by (z1, z2) 7→ (−z1,−z2) on the universal covering C2. The minimal
resolution Jac(C)/〈id, T 〉 is called the Kummer surface and denoted by
Kum(C).

For a Riemann surface of genus 2 given by

(5.9) C(λ1, λ2, λ3) : Y 2 = X(X − 1)(X − λ1)(X − λ2)(X − λ3),

Humbert [15] obtained explicit conditions when the corresponding Jacobian
variety Jac(C(λ1, λ2, λ3)) has real multiplication for ∆ = 5 and ∆ = 8.
These conditions are given by equations, called Humbert’s modular equa-
tions, in λ1, λ2 and λ3 (see [13, Theorem 2.9 and 2.11]). For example, Hum-
bert’s module equation for ∆ = 5 is given by

(5.10) 4(λ2
1λ3 − λ2

2 + λ2
3(1− λ1) + λ2

2λ3)(λ2
1λ2λ3 − λ1λ

2
2λ3)

= (λ2
1(λ2 + 1)λ3 − λ2

2(λ1 + λ3) + (1− λ1)λ2λ
2
3 + λ1(λ2 − λ3))2.

It is well known that Kum(C(λ1, λ2, λ3)) is given by the double cover
of the projective plane P2(C) = Proj(C[ζ0, ζ1, ζ2]) branched along 6 lines
ζ2 = 0, ζ0 = 0, ζ2 + 2ζ1 + ζ0 = 0 and ζ2 + 2λjζ1 + λ2

jζ0 = 0 (j = 1, 2, 3).
Humbert’s modular equations for ∆ = 5 and ∆ = 8 are obtained by a study
of Kum(C(λ1, λ2, λ3)).

Remark 5.6. LetM2,2 be the moduli space of genus 2 curves with level 2
structure and Q : M2,2 → A2 be the canonical projection. Humbert’s
modular equation for ∆ is not a defining equation of the Humbert surface
H∆ ⊂ A2, but defines a component of Q−1(H∆). To the best of the author’s
knowledge, to study Humbert’s modular equations is not easy, for they
have complicated forms in λ1, λ2 and λ3. However, Humbert’s modular
equation (5.10) for ∆ = 5 and our simple modular equation (3.11) for H5
are explicitly related by the formula of [25] Theorem 8.7.

Hashimoto and Murabayashi [13] studied the genus 2 curve C(λ1, λ2, λ3),
where (λ1, λ2, λ3) satisfies Humbert’s modular equations ∆ = 5 and ∆ = 8.
Applying Theorem 2.6 (2), they obtained the following results.
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Proposition 5.7 ([13, Theorem 1.3, 1.7]).
(1) Set a genus 2 curve C6(s, t) given by

C6(s, t) : Y 2 = X(X4 − PX3 +QX2 −RX + 1)

with P = −2(s + t), Q = (1+2t2)(11−28t2+8t4)
3(1−t2)(1−4t2) and R = −2(s− t).

Here, (s, t) satisfies

4s2t2 − s2 + t2 + 2 = 0.(5.11)

Then, Jac(C6(s, t)) is a principally polarized abelian surface with
quaternion multiplication by O6.

(2) Set a genus 2 curve C10(s, t) given by

C10(s, t) : Y 2 = X(X4 − PX3 +QX2 −RX + 1)

with P = 4(2t+1)(t2−t−1)
(t−1)2 , Q = (1+t2)(t4+8t3−10t2−8t+1)

t(t−1)2(t+1)2 and R =
(t−1)s

t(t+1)(2t+1) . Here, (s, t) satisfies

s2 − t(t− 2)(2t+ 1) = 0.(5.12)

Then, Jac(C10(s, t)) is a principally polarized abelian surface with
quaternion multiplication by O10.

Remark 5.8. The equation (5.11) (resp. (5.12)) does not give the exact
defining equation of the Shimura curve S6 (resp. S10) but defines a covering
of S6 (resp. S10). In fact, each curve defined by (5.11) and (5.12) is of genus
1. On the other hand, S6 and S10 are genus 0 curves.

Let j ∈ {6, 10}. Set Cj = {Cj(s, t)} in Proposition 5.7. For two mem-
bers Cj(s1, t1) and Cj(s2, t2) of Cj , if Jac(Cj(s1, t1)) and Jac(Cj(s2, t2))
are isomorphic as principally polarized abelian surfaces, we call two mem-
bers are equivalent. Let [Cj(s, t)] be the equivalence class of Cj(s, t) ∈ Cj .
Let C̃j denote the equivalent class of Cj . We have the family Kum(C̃j) =
{Kum(Cj(s, t)) | [Cj(s, t)] ∈ C̃j} of Kummer surfaces.

On the other hand, our K3 surface S(A : B : C) in (3.3) has the Shioda–
Inose structure. Namely, there exists an involution σ on S(A : B : C)
such that the minimal resolution K(A : B : C) of S(A : B : C)/〈id, σ〉
is a Kummer surface. The Kummer surface K(A : B : C) is given by the
following equation (see [23] Theorem 2.13),

(5.13) v2 = (u2 − 2t5)(u− (5At2 − 10Bt+ C)).

Remark 5.9. The period mapping for the family F = {S(A : B : C)}
coincides with that of the family K = {K(A : B : C)} of Kummer surfaces.
(see [23, Section 2.4]).
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From Theorem 5.5 and the defining equation (5.13), we have two families
of Kummer surfaces Kj = {Kj(A : B)} (j ∈ {6, 10}) given by

(5.14)

 K6(A :B) : v2 = (u2 − 2t5)(u− (5At2 − 10Bt− 3125A5−3375A2B
243 )),

K10(A :B) : v2 = (u2 − 2t5)(u− (5At2 − 10Bt− (A5 − 5A2B)).

Considering the properties of the K3 surface S(A : B : C), the above
procedure of the families Kj for j = 6, 10, Remark 2.4, Remark 5.6 and
Remark 5.9, we have the following proposition.

Proposition 5.10. For j ∈ {6, 10}, the family Kum(C̃j) coincides with the
family Kj.

6. The Shimura curves of discriminant 14 and 15 in P(1 : 3 : 5)

In this section, we obtain the explicit forms of the Shimura curves for
discriminants 14 and 15 in the weighted projective space Proj(C[A : B : C]).

However, as in Remark 2.4, the Shimura curve SD = ϕD(SD) ⊂ A2 is
not unique for D = 14 because there exist two choices of ϕD. So, the image
S14 of the Shimura curve depends on the triples (p, a, b) in the argument of
Section 2.3.

In this section, as in Example 2.10 and 2.11, we only consider the Shimura
curve S14 in A2 coming form the triple (p, a, b) = (5, 1, 3).

Theorem 6.1. The pull-back Ψ∗5(H5 ∩ H12) is given by the union of four
devisors R2, R3, R4, L2, where R2 is given by (5.4) and R3, R4 and L2 are
curves in P(1 : 3 : 5) = Proj(C[A,B,C]) in the following:

R3 : 1048576A10 − 30965760A7B− 144633600A4B2

− 157464000AB3 + 72721152A5C− 27293760A2BC− 59049C2 = 0,

R4 : 30517578125A15 + 911865234375A12B + 42529296875A9B2

− 97897974609375A6B3 + 424490000000000A3B4

− 345600000000000B5 + 2383486328125A10C
+ 32875975781250A7BC− 147816767984375A4B2C

+ 228155760000000AB3C + 19189204671875A5C2

− 29675018141125A2BC2 + 344730881243C3 = 0,
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L2 : −64000000000000000000A12B6 + 370000000000000000000A9B7

+ 815234375000000000000A6B8 − 3902343750000000000000A3B9

− 7119140625000000000000B10 + 38400000000000000000A13B4C

− 223920000000000000000A10B5C− 1075967500000000000000A7B6C

+ 3969323437500000000000A4B7C + 4702429687500000000000AB8C

− 7680000000000000000A14B2C2 + 45577600000000000000A11B3C2

+ 449730698000000000000A8B4C2−1463038602500000000000A5B5C2

− 1122863301562500000000A2B6C2 + 512000000000000000A15C3

− 3077760000000000000A12BC3 − 77561010400000000000A9B2C3

+ 235959322740000000000A6B3C3 + 121351323118750000000A3B4C3

+ 13523702118750000000B5C3 + 4779900760000000000A10C4

− 13908191752800000000A7BC4 − 8326918293212000000A4B2C4

− 2530877087227500000AB3C4 + 449415539646800000A5C5

+ 103922033314060000A2BC5 + 50787635527751C6 = 0.

Proof. Recalling (3.19) and (4.7), set

F
(5,12)
1 (A,B,C, e, f, g) = α5(A,B,C)− α12(e, f, g),

F
(5,12)
2 (A,B,C, e, f, g) = β5(A,B,C)− β12(e, f, g),

F
(5,12)
3 (A,B,C, e, f, g) = γ5(A,B,C)− γ12(e, f, g),

F
(5,12)
4 (A,B,C, e, f, g) = δ5(A,B,C)− δ12(e, f, g).

Take the weighted homogeneous ideal I12 = 〈F (5,12)
1 , F

(5,12)
2 , F

(5,12)
3 , F

(5,12)
4 〉

of the ring C[A,B,C, e, f, g]. As in the proof of Theorem 5.1, the zero set of
the ideal I12,S = I12∩C[A,B,C] corresponds to the pull-back Ψ∗5(H5∩H12).
By a computer aided calculation, we can show that the zero set of I12,S is
the union of the curves R2, R3, R4 and L2. �

Theorem 6.2. The Shimura curve Ψ∗5(S15) corresponds to R3 and the
Shimura curve Ψ∗5(S14) corresponds to R4.

Proof. First, according to Theorem 6.1, the divisor Ψ∗5(H5 ∩ H12) consists
of only four irreducible components R2, R3, R4 and L2. However, from The-
orem 5.5, the curve R2 is the Shimura curve Ψ∗5(S6). Moreover, since the
curve L2 passes the cusp (A : B : C) = (1 : 0 : 0), the curve L2 does not
corresponds to any Shimura curves.
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Then, we shall identify the curves R3 and R4. Because we have Exam-
ple 2.10, the divisor Ψ∗5(H5∩H12) contains the Shimura curves Ψ∗5(S15) and
Ψ∗5(S14). So, of the two curves R3 and R4, one corresponds to Ψ∗5(S15) and
the other corresponds to Ψ∗5(S14). By the way, according to Example 2.11,
only the Shimura curve Ψ∗5(S14) is contained in the divisor Ψ∗5(H5 ∩ H21).
Moreover, due to the next lemma, the curve R4 is an irreducible component
of Ψ∗5(H5∩H21). Therefore, we conclude that the curve R3 (resp. R4) gives
the explicit model of the Shimura curve Ψ∗5(S15), (resp. Ψ∗5(S14)). �

Lemma 6.3. The curve R4 is an irreducible component of the divisor
Ψ∗5(H5 ∩H21).

Proof. Using the notation in (3.19) and (4.14), we set

F
(5,21)
1 (A,B,C, q1, r1, s1) = α5(A,B,C)− α21(q1, r1, s1),

F
(5,21)
2 (A,B,C, q1, r1, s1) = β5(A,B,C)− β21(q1, r1, s1),

F
(5,21)
3 (A,B,C, q1, r1, s1) = γ5(A,B,C)− γ21(q1, r1, s1),

F
(5,21)
4 (A,B,C, q1, r1, s1) = δ5(A,B,C)− δ21(q1, r1, s1).

Take the weighted homogeneous ideal I21 = 〈F (5,21)
1 , F

(5,21)
2 , F

(5,21)
3 , F

(5,21)
4 〉

in the ring C[A,B,C, q1, r1, s1]. The zero set of the ideal I21,S = I21 ∩
C[A,B,C] gives the curve Ψ∗5(H5∩H21). However, because of a huge amount
of calculations of the Gröbner basis, it is very difficult to obtain a system
of generators of the ideal I21,S directly.

Instead, we shall consider the ideal I21,T = I21 ∩ C[q1, r1, s1]. By a com-
puter aided calculation, we can show that the ideal I21,T is a principal ideal
generated by

(6.1) q1(2q1 + r1)s2
1(q3

1 − q1s1 − r1s1)(2q4
1 − 27q2

1s1 − 27q1r1s1 + 81s2
1)

× (2q4
1 + q3

1r1 − 11q2
1s1 − 22q1r1s1 − 8r2

1s1 + 9s2
1)

× (q6
1 − 20q4

1s1 − 9q3
1r1s1 + 98q2

1s
2
1 + 62q1r1s

2
1 + 8r2

1s
2
1 + 9s3

1).

Next, taking a factor q3
1 − q1s1 − r1s1 of (6.1), we consider the new

ideal J21 = 〈F (5,21)
1 , F

(5,21)
2 , F

(5,21)
3 , F

(5,21)
4 , q3

1 − q1s1 − r1s1〉. The zero set
V (J21,S) of the elimination ideal J21,S = J21 ∩ C[A,B,C] corresponds to
certain components of Ψ∗5(H5 ∩H21). By a computer aided calculation, we
can compute the Gröbner basis of the ideal J21,S . So, we can check that
the curve R4 is contained in the zero set of the ideal J21,S . �

The author believes that the method using icosahedral invariants and
the theta expression (3.7) is effective for the Shimura curves SD for D > 15
with some skillful computations of Gröbner basis.
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