We discuss indivisibility by prime numbers of the class number of the -th layer of the cyclotomic -extension of where is an arbitrary fixed prime number.
We denote by the class number of . Put if or if . For positive integers and , let be the set of prime numbers satisfying the following two conditions: (1) the order of modulo is and (2) is the exact power of dividing . In this paper, we define an explicit function which depends only on , and . We show that is indivisible by every prime number in with for every non-negative integer .
Nous étudions la non divisibilité par un nombre premier du nombre de classes du -ième étage de la -extension cyclotomique de , où est un nombre premier fixé. Posons si et si et notons l’ensemble des nombres premiers dont l’ordre modulo vaut et dont est la plus grande puissance de divisant . Dans cet article nous définissons une constante explicite ayant la propriété que chaque est non divisible par les dans tels que .
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.965
Keywords: Class number, $\mathbb{Z}_p$-extension, Height of algebraic number.
@article{JTNB_2016__28_3_811_0, author = {Takayuki Morisawa and Ryotaro Okazaki}, title = {Height and {Weber{\textquoteright}s} {Class} {Number} {Problem}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {811--828}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {3}, year = {2016}, doi = {10.5802/jtnb.965}, zbl = {1415.11165}, mrnumber = {3610699}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.965/} }
TY - JOUR AU - Takayuki Morisawa AU - Ryotaro Okazaki TI - Height and Weber’s Class Number Problem JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 811 EP - 828 VL - 28 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.965/ DO - 10.5802/jtnb.965 LA - en ID - JTNB_2016__28_3_811_0 ER -
%0 Journal Article %A Takayuki Morisawa %A Ryotaro Okazaki %T Height and Weber’s Class Number Problem %J Journal de théorie des nombres de Bordeaux %D 2016 %P 811-828 %V 28 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.965/ %R 10.5802/jtnb.965 %G en %F JTNB_2016__28_3_811_0
Takayuki Morisawa; Ryotaro Okazaki. Height and Weber’s Class Number Problem. Journal de théorie des nombres de Bordeaux, Volume 28 (2016) no. 3, pp. 811-828. doi : 10.5802/jtnb.965. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.965/
[1] H. Bauer, « Numerische Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper », J. Number Theory 1 (1969), p. 161-162. | DOI | Zbl
[2] H. F. Blichfeldt, « A new principle in the geometry of numbers, with some applications », Trans. Amer. Math. Soc. 15 (1914), no. 3, p. 227-235. | DOI | MR | Zbl
[3] H. Cohn, « A numerical study of Weber’s real class number of calculation. I », Numer. Math. 2 (1960), p. 347-362. | DOI | MR | Zbl
[4] —, « Proof that Weber’s normal units are not perfect powers », Proc. Amer. Math. Soc. 12 (1961), p. 964-966. | DOI | MR | Zbl
[5] T. Fukuda & K. Komatsu, « Weber’s class number problem in the cyclotomic -extension of , III », Int. J. Number Theory 7 (2011), no. 6, p. 1627-1635. | DOI | MR | Zbl
[6] L. Gerber, « The orthocentric simplex as an extreme simplex », Pacific J. Math. 56 (1975), no. 1, p. 97-111. | DOI | MR | Zbl
[7] K. Horie, « Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field », J. London Math. Soc. (2) 66 (2002), no. 2, p. 257-275. | DOI | MR | Zbl
[8] —, « The ideal class group of the basic -extension over an imaginary quadratic field », Tohoku Math. J. (2) 57 (2005), no. 3, p. 375-394. | DOI | Zbl
[9] —, « Primary components of the ideal class group of the -extension over for typical inert primes », Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 3, p. 40-43. | DOI | Zbl
[10] —, « Certain primary components of the ideal class group of the -extension over the rationals », Tohoku Math. J. (2) 59 (2007), no. 2, p. 259-291. | DOI | MR | Zbl
[11] K. Horie & M. Horie, « The narrow class groups of some -extensions over the rationals », Acta Arith. 135 (2008), no. 2, p. 159-180. | DOI | Zbl
[12] —, « The ideal class group of the -extension over the rational field », Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 10, p. 155-159. | DOI | MR
[13] —, « The ideal class group of the -extension over the rationals », Tohoku Math. J. (2) 61 (2009), no. 4, p. 551-570. | DOI | Zbl
[14] —, « The narrow class groups of the - and -extensions over the rational field », Abh. Math. Semin. Univ. Hambg. 80 (2010), no. 1, p. 47-57. | DOI | MR
[15] —, « The -class group of the -extension over the rational field », J. Math. Soc. Japan 64 (2012), no. 4, p. 1071-1089. | DOI | Zbl
[16] H. Ichimura & S. Nakajima, « On the 2-part of the class numbers of cyclotomic fields of prime power conductors », J. Math. Soc. Japan 64 (2012), no. 1, p. 317-342. | DOI | MR | Zbl
[17] K. Iwasawa, « A note on class numbers of algebraic number fields », Abh. Math. Sem. Univ. Hamburg 20 (1956), p. 257-258. | DOI | MR
[18] F. J. van der Linden, « Class number computations of real abelian number fields », Math. Comp. 39 (1982), no. 160, p. 693-707. | DOI | MR | Zbl
[19] J. M. Masley, « Class numbers of real cyclic number fields with small conductor », Compositio Math. 37 (1978), no. 3, p. 297-319. | Zbl
[20] J. C. Miller, « Class numbers of totally real fields and applications to the Weber class number problem », Acta Arith. 164 (2014), no. 4, p. 381-398. | DOI | MR | Zbl
[21] —, « Class numbers in cyclotomic -extensions », J. Number Theory 150 (2015), p. 47-73. | DOI
[22] T. Morisawa, « Mahler measure of the Horie unit and Weber’s class number problem in the cyclotomic -extension of », Acta Arith. 153 (2012), no. 1, p. 35-49. | DOI | Zbl
[23] T. Morisawa & R. Okazaki, « On filtrations of units of Viète field », preprint. | DOI
[24] —, « Mahler measure and Weber’s class number problem in the cyclotomic -extension of for odd prime number », Tohoku Math. J. (2) 65 (2013), no. 2, p. 253-272. | DOI | MR | Zbl
[25] R. Okazaki, « On a lower bound for relative units, Schinzel’s lower bound and Weber’s class number problem », preprint.
[26] L. C. Washington, « Class numbers and -extensions », Math. Ann. 214 (1975), p. 177-193. | DOI | Zbl
[27] —, « The non--part of the class number in a cyclotomic -extension », Invent. Math. 49 (1978), no. 1, p. 87-97. | DOI | MR | Zbl
[28] H. Weber, « Theorie der Abel’schen Zahlkörper », Acta Math. 8 (1886), no. 1, p. 193-263. | DOI
[29] —, Lehrbuch der Algebra, Braunschweig, Friedrich Vieweg und Sohn, 1895, xv+653 pages. | DOI | MR
Cited by Sources: