The Broadhurst-Kreimer (BK) conjecture describes the Hilbert series of a bigraded Lie algebra
La conjecture de Broadhurst-Kreimer (BK) décrit la série de Hilbert d’une algèbre de Lie bigraduée
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.966
Mots-clés : Multiple zeta values, motivic algebras, koszulity
Benjamin Enriquez 1 ; Pierre Lochak 2
@article{JTNB_2016__28_3_829_0, author = {Benjamin Enriquez and Pierre Lochak}, title = {Homology of depth-graded motivic {Lie} algebras and koszulity}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {829--850}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {3}, year = {2016}, doi = {10.5802/jtnb.966}, zbl = {1414.17012}, mrnumber = {3610700}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.966/} }
TY - JOUR AU - Benjamin Enriquez AU - Pierre Lochak TI - Homology of depth-graded motivic Lie algebras and koszulity JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 829 EP - 850 VL - 28 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.966/ DO - 10.5802/jtnb.966 LA - en ID - JTNB_2016__28_3_829_0 ER -
%0 Journal Article %A Benjamin Enriquez %A Pierre Lochak %T Homology of depth-graded motivic Lie algebras and koszulity %J Journal de théorie des nombres de Bordeaux %D 2016 %P 829-850 %V 28 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.966/ %R 10.5802/jtnb.966 %G en %F JTNB_2016__28_3_829_0
Benjamin Enriquez; Pierre Lochak. Homology of depth-graded motivic Lie algebras and koszulity. Journal de théorie des nombres de Bordeaux, Tome 28 (2016) no. 3, pp. 829-850. doi : 10.5802/jtnb.966. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.966/
[1] Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17, Société Mathématique de France, Paris, 2004, xii+261 pages. | Zbl
[2] N. Bourbaki, Éléments de mathématique. Algèbre. Chapitres 1 à 3, Hermann, Paris, 1970, xiii+635 pp. pages. | Zbl
[3] D. J. Broadhurst & D. Kreimer, « Association of multiple zeta values with positive knots via Feynman diagrams up to
[4] F. Brown, « Depth-graded motivic multiple zeta values », . | arXiv
[5] —, « Motivic periods and the projective line minus three points », . | arXiv
[6] —, « Mixed Tate motives over
[7] S. Carr, H. Gangl & L. Schneps, « On the Broadhurst-Kreimer generating series for multiple zeta values », preprint. | DOI | Zbl
[8] P. Deligne & A. B. Goncharov, « Groupes fondamentaux motiviques de Tate mixte », Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 1, p. 1-56. | DOI | Numdam | MR | Zbl
[9] V. G. Drinfelʼd, « On quasitriangular quasi-Hopf algebras and on a group that is closely connected with
[10] J. Ecalle, « ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan », J. Théor. Nombres Bordeaux 15 (2003), no. 2, p. 411-478. | DOI | Zbl
[11] —, « The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles », in Asymptotics in dynamics, geometry and PDEs; generalized Borel summation. Vol. II, CRM Series, vol. 12, Ed. Norm., Pisa, 2011, With computational assistance from S. Carr, p. 27-211. | DOI | Zbl
[12] H. Furusho, « Pentagon and hexagon equations », Ann. of Math. (2) 171 (2010), no. 1, p. 545-556. | DOI | MR | Zbl
[13] —, « Double shuffle relation for associators », Ann. of Math. (2) 174 (2011), no. 1, p. 341-360. | DOI | MR | Zbl
[14] H. Gangl, M. Kaneko & D. Zagier, « Double zeta values and modular forms », in Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ, 2006, p. 71-106. | DOI | Zbl
[15] A. B. Goncharov, « Multiple polylogarithms, cyclotomy and modular complexes », Math. Res. Lett. 5 (1998), no. 4, p. 497-516. | DOI | MR | Zbl
[16] —, « Multiple
[17] R. Hain, « Genus 3 mapping class groups are not Kähler », J. Topol. 8 (2015), no. 1, p. 213-246. | DOI | Zbl
[18] K. Ihara, M. Kaneko & D. Zagier, « Derivation and double shuffle relations for multiple zeta values », Compos. Math. 142 (2006), no. 2, p. 307-338. | DOI | MR | Zbl
[19] T. T. Q. Le & J. Murakami, « Kontsevich’s integral for the Kauffman polynomial », Nagoya Math. J. 142 (1996), p. 39-65. | DOI | MR
[20] J.-L. Loday & B. Vallette, Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346, Springer, Heidelberg, 2012, xxiv+634 pages. | DOI | Zbl
[21] A. Polishchuk & L. Positselski, Quadratic algebras, University Lecture Series, vol. 37, American Mathematical Society, Providence, RI, 2005, xii+159 pages. | DOI | Zbl
[22] G. Racinet, « Doubles mélanges des polylogarithmes multiples aux racines de l’unité », Publ. Math. Inst. Hautes Études Sci. (2002), no. 95, p. 185-231. | DOI | Numdam | Zbl
[23] L. Schneps, « On the Poisson bracket on the free Lie algebra in two generators », J. Lie Theory 16 (2006), no. 1, p. 19-37. | Zbl
[24] J.-P. Serre, Cohomologie galoisienne, fifth ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994, x+181 pages. | Zbl
[25] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994, xiv+450 pages. | Zbl
[26] D. Zagier, « Values of zeta functions and their applications », in First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, Birkhäuser, Basel, 1994, p. 497-512. | DOI | Zbl
- Bigraded Lie algebras related to multiple zeta values, Publications of the Research Institute for Mathematical Sciences, Kyoto University, Volume 58 (2022) no. 4, pp. 757-791 | DOI:10.4171/prims/58-4-4 | Zbl:1523.11156
- Depth-graded motivic multiple zeta values, Compositio Mathematica, Volume 157 (2021) no. 3, pp. 529-572 | DOI:10.1112/s0010437x20007654 | Zbl:1481.11084
- Relationships between multiple zeta values of depths 2 and 3 and period polynomials, Israel Journal of Mathematics, Volume 242 (2021) no. 1, pp. 359-400 | DOI:10.1007/s11856-021-2139-8 | Zbl:1486.11108
- Motivic multiple zeta values relative to
, Algebra Number Theory, Volume 14 (2020) no. 10, pp. 2685-2712 | DOI:10.2140/ant.2020.14.2685 | Zbl:1489.11131 - Depth-graded motivic Lie algebra, Journal of Number Theory, Volume 214 (2020), pp. 38-55 | DOI:10.1016/j.jnt.2020.04.022 | Zbl:1436.14013
- The depth structure of motivic multiple zeta values, Mathematische Annalen, Volume 374 (2019) no. 1-2, pp. 179-209 | DOI:10.1007/s00208-018-1763-z | Zbl:1479.11148
Cité par 6 documents. Sources : zbMATH