Let denote an almost-prime with at most prime factors, counted according to multiplicity. In this paper it is proved, that for every sufficiently large even integer , the equation
is solvable with being a and the other variables primes. This result constitutes an enhancement upon that of C. Hooley.
Soit l’ensemble des nombres presque-premiers avec au plus facteurs premiers comptés avec avec multiplicité. Dans cet article, on motre que pour tout entier pair suffisamment grand, l’équation
a des solutions avec un et les autres étant des nombres premiers. Ceci est une amélioration de résultats antérieurs de C. Hooley.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.964
Keywords: Waring-Goldbach problem, Hardy-Littlewood method, sieve theory, almost-prime.
@article{JTNB_2016__28_3_791_0, author = {Yingchun Cai}, title = {Waring-Goldbach problem: two squares and higher powers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {791--810}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {3}, year = {2016}, doi = {10.5802/jtnb.964}, zbl = {1415.11125}, mrnumber = {3610698}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.964/} }
TY - JOUR AU - Yingchun Cai TI - Waring-Goldbach problem: two squares and higher powers JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 791 EP - 810 VL - 28 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.964/ DO - 10.5802/jtnb.964 LA - en ID - JTNB_2016__28_3_791_0 ER -
%0 Journal Article %A Yingchun Cai %T Waring-Goldbach problem: two squares and higher powers %J Journal de théorie des nombres de Bordeaux %D 2016 %P 791-810 %V 28 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.964/ %R 10.5802/jtnb.964 %G en %F JTNB_2016__28_3_791_0
Yingchun Cai. Waring-Goldbach problem: two squares and higher powers. Journal de théorie des nombres de Bordeaux, Volume 28 (2016) no. 3, pp. 791-810. doi : 10.5802/jtnb.964. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.964/
[1] J. Brüdern, « Sums of squares and higher powers. I », J. London Math. Soc. (2) 35 (1987), no. 2, p. 233-250. | DOI | MR | Zbl
[2] —, Sieves, the circle method, and waring’s problem for cubes, Mathematica Gottingensis, vol. 51, Sonderforschungsbereich Geometrie und Analysis, 1991.
[3] —, « A sieve approach to the Waring-Goldbach problem. I. Sums of four cubes », Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 4, p. 461-476. | DOI | MR | Zbl
[4] J. Brüdern & K. Kawada, « Ternary problems in additive prime number theory », in Analytic number theory (Beijing/Kyoto, 1999), Dev. Math., vol. 6, Kluwer Acad. Publ., Dordrecht, 2002, p. 39-91. | DOI | Zbl
[5] P. X. Gallagher, « A large sieve density estimate near », Invent. Math. 11 (1970), p. 329-339. | DOI | MR | Zbl
[6] H. Halberstam & H.-E. Richert, Sieve methods, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1974, London Mathematical Society Monographs, No. 4, xiv+364 pp. (loose errata) pages. | Zbl
[7] C. Hooley, « On a new approach to various problems of Waring’s type », in Recent progress in analytic number theory, Vol. 1 (Durham, 1979), Academic Press, London-New York, 1981, p. 127-191.
[8] L. K. Hua, Additive theory of prime numbers, Translations of Mathematical Monographs, Vol. 13, American Mathematical Society, Providence, R.I., 1965, xiii+190 pages. | DOI | Zbl
[9] H. Iwaniec, « A new form of the error term in the linear sieve », Acta Arith. 37 (1980), p. 307-320. | DOI | MR | Zbl
[10] K. Kawada & T. D. Wooley, « On the Waring-Goldbach problem for fourth and fifth powers », Proc. London Math. Soc. (3) 83 (2001), no. 1, p. 1-50. | DOI | MR | Zbl
[11] K. Thanigasalam, « On admissible exponents for th powers », Bull. Calcutta Math. Soc. 86 (1994), no. 2, p. 175-178. | Zbl
[12] E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed., The Clarendon Press, Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown, x+412 pages. | Zbl
[13] R. C. Vaughan, « Sums of three cubes », Bull. London Math. Soc. 17 (1985), no. 1, p. 17-20. | DOI | MR | Zbl
[14] —, The Hardy-Littlewood method, second ed., Cambridge Tracts in Mathematics, vol. 125, Cambridge University Press, Cambridge, 1997, xiv+232 pages. | Zbl
[15] I. M. Vinogradov, Elements of number theory, Dover Publications, Inc., New York, 1954, Translated by S. Kravetz, viii+227 pages. | DOI | Zbl
Cited by Sources: