Let
is solvable with
Soit
a des solutions avec
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.964
Mots-clés : Waring-Goldbach problem, Hardy-Littlewood method, sieve theory, almost-prime.
Yingchun Cai 1
@article{JTNB_2016__28_3_791_0, author = {Yingchun Cai}, title = {Waring-Goldbach problem: two squares and higher powers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {791--810}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {3}, year = {2016}, doi = {10.5802/jtnb.964}, zbl = {1415.11125}, mrnumber = {3610698}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.964/} }
TY - JOUR AU - Yingchun Cai TI - Waring-Goldbach problem: two squares and higher powers JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 791 EP - 810 VL - 28 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.964/ DO - 10.5802/jtnb.964 LA - en ID - JTNB_2016__28_3_791_0 ER -
%0 Journal Article %A Yingchun Cai %T Waring-Goldbach problem: two squares and higher powers %J Journal de théorie des nombres de Bordeaux %D 2016 %P 791-810 %V 28 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.964/ %R 10.5802/jtnb.964 %G en %F JTNB_2016__28_3_791_0
Yingchun Cai. Waring-Goldbach problem: two squares and higher powers. Journal de théorie des nombres de Bordeaux, Tome 28 (2016) no. 3, pp. 791-810. doi : 10.5802/jtnb.964. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.964/
[1] J. Brüdern, « Sums of squares and higher powers. I », J. London Math. Soc. (2) 35 (1987), no. 2, p. 233-250. | DOI | MR | Zbl
[2] —, Sieves, the circle method, and waring’s problem for cubes, Mathematica Gottingensis, vol. 51, Sonderforschungsbereich Geometrie und Analysis, 1991.
[3] —, « A sieve approach to the Waring-Goldbach problem. I. Sums of four cubes », Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 4, p. 461-476. | DOI | MR | Zbl
[4] J. Brüdern & K. Kawada, « Ternary problems in additive prime number theory », in Analytic number theory (Beijing/Kyoto, 1999), Dev. Math., vol. 6, Kluwer Acad. Publ., Dordrecht, 2002, p. 39-91. | DOI | Zbl
[5] P. X. Gallagher, « A large sieve density estimate near
[6] H. Halberstam & H.-E. Richert, Sieve methods, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1974, London Mathematical Society Monographs, No. 4, xiv+364 pp. (loose errata) pages. | Zbl
[7] C. Hooley, « On a new approach to various problems of Waring’s type », in Recent progress in analytic number theory, Vol. 1 (Durham, 1979), Academic Press, London-New York, 1981, p. 127-191.
[8] L. K. Hua, Additive theory of prime numbers, Translations of Mathematical Monographs, Vol. 13, American Mathematical Society, Providence, R.I., 1965, xiii+190 pages. | DOI | Zbl
[9] H. Iwaniec, « A new form of the error term in the linear sieve », Acta Arith. 37 (1980), p. 307-320. | DOI | MR | Zbl
[10] K. Kawada & T. D. Wooley, « On the Waring-Goldbach problem for fourth and fifth powers », Proc. London Math. Soc. (3) 83 (2001), no. 1, p. 1-50. | DOI | MR | Zbl
[11] K. Thanigasalam, « On admissible exponents for
[12] E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed., The Clarendon Press, Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown, x+412 pages. | Zbl
[13] R. C. Vaughan, « Sums of three cubes », Bull. London Math. Soc. 17 (1985), no. 1, p. 17-20. | DOI | MR | Zbl
[14] —, The Hardy-Littlewood method, second ed., Cambridge Tracts in Mathematics, vol. 125, Cambridge University Press, Cambridge, 1997, xiv+232 pages. | Zbl
[15] I. M. Vinogradov, Elements of number theory, Dover Publications, Inc., New York, 1954, Translated by S. Kravetz, viii+227 pages. | DOI | Zbl
- Investigating Computational Generalization of Mixed Polynomial Exponential on Diophantine Equations: αn + βn + α(αsψβs)m + D = r(uk + vk + wk) with consecutive α and β, African Scientific Annual Review, Volume 2 (2025) no. 1, p. 1 | DOI:10.51867/asarev.maths.2.1.1
- On Extension of Existing Results on the Diophantine Equation:
, Earthline Journal of Mathematical Sciences (2025), p. 201 | DOI:10.34198/ejms.15225.201209 - On Some Relationships of Symmetric Sums:
, Earthline Journal of Mathematical Sciences (2024), p. 181 | DOI:10.34198/ejms.15225.181186 - On Waring-Goldbach problem for two squares and five biquadrates, Indian Journal of Pure Applied Mathematics, Volume 55 (2024) no. 2, pp. 776-793 | DOI:10.1007/s13226-023-00408-z | Zbl:1543.11094
- On the Waring-Goldbach problem for two squares and four cubes, Open Mathematics, Volume 21 (2023), p. 21 (Id/No 20220608) | DOI:10.1515/math-2022-0608 | Zbl:1524.11177
- Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes, Sbornik: Mathematics, Volume 214 (2023) no. 5, pp. 744-756 | DOI:10.4213/sm9689e | Zbl:1537.11128
- Тонкие исключительные множества проблем Варинга-Гольдбаха для квадратов и кубов простых чисел, Математический сборник, Volume 214 (2023) no. 5, p. 140 | DOI:10.4213/sm9689
- On the Waring–Goldbach problem for two squares and four cubes, AIMS Mathematics, Volume 7 (2022) no. 7, p. 12415 | DOI:10.3934/math.2022689
- On the Waring-Goldbach problem for squares, cubes and higher powers, The Ramanujan Journal, Volume 56 (2021) no. 3, pp. 1123-1150 | DOI:10.1007/s11139-020-00334-2 | Zbl:1497.11246
- On a Waring-Goldbach problem involving squares and cubes, Mathematica Slovaca, Volume 69 (2019) no. 6, p. 1249 | DOI:10.1515/ms-2017-0306
Cité par 10 documents. Sources : Crossref, zbMATH