We compute the spinor class field for a genus of orders, in a central simple algebra of dimension or higher, that are intersections of two maximal orders, i.e., we compute the number of conjugacy classes in a genus of such orders, as the degree of an explicit extension of class fields. We give applications to the study of the automorphism groups of these orders and to the study of representations of commutative orders.
Nous calculons le corps de classes spinoriel pour un genre d’ordres qui sont des intersections de deux ordres maximaux, dans une algèbre centrale simple de dimension ou plus. Autrement dit, nous calculons le nombre des classes de conjugaison dans un genre de tels ordres, en termes du degré d’une extension des corps de classes. Nous donnons des applications à l’étude des groupes d’automorphismes de ces ordres et à l’étude des représentations d’ordres commutatifs.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.958
Mots-clés : Central simple algebras, Eichler orders, spinor class fields, buildings
Luis Arenas-Carmona 1
@article{JTNB_2016__28_3_679_0, author = {Luis Arenas-Carmona}, title = {Spinor class fields for generalized {Eichler} orders}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {679--698}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {3}, year = {2016}, doi = {10.5802/jtnb.958}, zbl = {1415.11173}, mrnumber = {3610692}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.958/} }
TY - JOUR AU - Luis Arenas-Carmona TI - Spinor class fields for generalized Eichler orders JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 679 EP - 698 VL - 28 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.958/ DO - 10.5802/jtnb.958 LA - en ID - JTNB_2016__28_3_679_0 ER -
%0 Journal Article %A Luis Arenas-Carmona %T Spinor class fields for generalized Eichler orders %J Journal de théorie des nombres de Bordeaux %D 2016 %P 679-698 %V 28 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.958/ %R 10.5802/jtnb.958 %G en %F JTNB_2016__28_3_679_0
Luis Arenas-Carmona. Spinor class fields for generalized Eichler orders. Journal de théorie des nombres de Bordeaux, Volume 28 (2016) no. 3, pp. 679-698. doi : 10.5802/jtnb.958. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.958/
[1] P. Abramenko & K. S. Brown, Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008, Theory and applications, xxii+747 pages. | DOI
[2] P. Abramenko & G. Nebe, « Lattice chain models for affine buildings of classical type », Math. Ann. 322 (2002), no. 3, p. 537-562. | DOI | MR | Zbl
[3] L. Arenas-Carmona, « Applications of spinor class fields: embeddings of orders and quaternionic lattices », Ann. Inst. Fourier (Grenoble) 53 (2003), no. 7, p. 2021-2038. | DOI | MR | Zbl
[4] —, « Maximal selectivity for orders in fields », J. Number Theory 132 (2012), no. 12, p. 2748-2755. | DOI | MR | Zbl
[5] —, « Representation fields for commutative orders », Ann. Inst. Fourier (Grenoble) 62 (2012), no. 2, p. 807-819. | DOI | MR | Zbl
[6] —, « Representation fields for cyclic orders », Acta Arith. 156 (2012), no. 2, p. 143-158. | DOI | MR
[7] —, « Eichler orders, trees and representation fields », Int. J. Number Theory 9 (2013), no. 7, p. 1725-1741. | DOI | MR | Zbl
[8] A. O. L. Atkin & J. Lehner, « Hecke operators on », Math. Ann. 185 (1970), p. 134-160. | DOI
[9] F. Bars, « The group structure of the normalizer of after Atkin-Lehner », Comm. Algebra 36 (2008), no. 6, p. 2160-2170. | DOI | MR | Zbl
[10] M. Deuring, « Die Anzahl der Typen von Maximalordnungen einer definiten Quaternionenalgebra mit primer Grundzahl », Jber. Deutsch. Math. Verein. 54 (1950), p. 24-41. | Zbl
[11] T. R. Shemanske, « Split orders and convex polytopes in buildings », J. Number Theory 130 (2010), no. 1, p. 101-115. | DOI | MR | Zbl
[12] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980, vii+169 pages. | Zbl
[13] —, « Variétés riemanniennes isospectrales et non isométriques », Ann. of Math. (2) 112 (1980), no. 1, p. 21-32. | DOI | MR | Zbl
Cited by Sources: