Spinor class fields for generalized Eichler orders
Journal de Théorie des Nombres de Bordeaux, Tome 28 (2016) no. 3, pp. 679-698.

Nous calculons le corps de classes spinoriel pour un genre d’ordres qui sont des intersections de deux ordres maximaux, dans une algèbre centrale simple de dimension 9 ou plus. Autrement dit, nous calculons le nombre des classes de conjugaison dans un genre de tels ordres, en termes du degré d’une extension des corps de classes. Nous donnons des applications à l’étude des groupes d’automorphismes de ces ordres et à l’étude des représentations d’ordres commutatifs.

We compute the spinor class field for a genus of orders, in a central simple algebra of dimension 9 or higher, that are intersections of two maximal orders, i.e., we compute the number of conjugacy classes in a genus of such orders, as the degree of an explicit extension of class fields. We give applications to the study of the automorphism groups of these orders and to the study of representations of commutative orders.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.958
Classification : 11R54,  11S45,  20E42
Mots clés : Central simple algebras, Eichler orders, spinor class fields, buildings
@article{JTNB_2016__28_3_679_0,
     author = {Luis Arenas-Carmona},
     title = {Spinor class fields for generalized {Eichler} orders},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {679--698},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {28},
     number = {3},
     year = {2016},
     doi = {10.5802/jtnb.958},
     mrnumber = {3610692},
     zbl = {1415.11173},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.958/}
}
TY  - JOUR
AU  - Luis Arenas-Carmona
TI  - Spinor class fields for generalized Eichler orders
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2016
DA  - 2016///
SP  - 679
EP  - 698
VL  - 28
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.958/
UR  - https://www.ams.org/mathscinet-getitem?mr=3610692
UR  - https://zbmath.org/?q=an%3A1415.11173
UR  - https://doi.org/10.5802/jtnb.958
DO  - 10.5802/jtnb.958
LA  - en
ID  - JTNB_2016__28_3_679_0
ER  - 
Luis Arenas-Carmona. Spinor class fields for generalized Eichler orders. Journal de Théorie des Nombres de Bordeaux, Tome 28 (2016) no. 3, pp. 679-698. doi : 10.5802/jtnb.958. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.958/

[1] P. Abramenko & K. S. Brown, Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008, Theory and applications, xxii+747 pages. | Article

[2] P. Abramenko & G. Nebe, « Lattice chain models for affine buildings of classical type », Math. Ann. 322 (2002), no. 3, p. 537-562. | Article | MR 1895706 | Zbl 1113.20028

[3] L. Arenas-Carmona, « Applications of spinor class fields: embeddings of orders and quaternionic lattices », Ann. Inst. Fourier (Grenoble) 53 (2003), no. 7, p. 2021-2038. | Article | MR 2044166 | Zbl 1060.11018

[4] —, « Maximal selectivity for orders in fields », J. Number Theory 132 (2012), no. 12, p. 2748-2755. | Article | MR 2965188 | Zbl 1269.11116

[5] —, « Representation fields for commutative orders », Ann. Inst. Fourier (Grenoble) 62 (2012), no. 2, p. 807-819. | Article | MR 2985517 | Zbl 1269.11115

[6] —, « Representation fields for cyclic orders », Acta Arith. 156 (2012), no. 2, p. 143-158. | Article | MR 2997563

[7] —, « Eichler orders, trees and representation fields », Int. J. Number Theory 9 (2013), no. 7, p. 1725-1741. | Article | MR 3130146 | Zbl 1306.11094

[8] A. O. L. Atkin & J. Lehner, « Hecke operators on Γ 0 (m) », Math. Ann. 185 (1970), p. 134-160. | Article

[9] F. Bars, « The group structure of the normalizer of Γ 0 (N) after Atkin-Lehner », Comm. Algebra 36 (2008), no. 6, p. 2160-2170. | Article | MR 2418382 | Zbl 1156.20040

[10] M. Deuring, « Die Anzahl der Typen von Maximalordnungen einer definiten Quaternionenalgebra mit primer Grundzahl », Jber. Deutsch. Math. Verein. 54 (1950), p. 24-41. | Zbl 0039.02902

[11] T. R. Shemanske, « Split orders and convex polytopes in buildings », J. Number Theory 130 (2010), no. 1, p. 101-115. | Article | MR 2569844 | Zbl 1267.11116

[12] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980, vii+169 pages. | Zbl 0422.12008

[13] —, « Variétés riemanniennes isospectrales et non isométriques », Ann. of Math. (2) 112 (1980), no. 1, p. 21-32. | Article | MR 584073 | Zbl 0445.53026

Cité par Sources :