Given a separable nonconstant polynomial
Étant donné un polynôme non constant séparable
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.959
Mots-clés : Squarefree part, hyperelliptic curve, quadratic twist, congruent number
David Krumm 1
@article{JTNB_2016__28_3_699_0, author = {David Krumm}, title = {Squarefree parts of polynomial values}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {699--724}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {3}, year = {2016}, doi = {10.5802/jtnb.959}, zbl = {1415.11148}, mrnumber = {3610693}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.959/} }
TY - JOUR AU - David Krumm TI - Squarefree parts of polynomial values JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 699 EP - 724 VL - 28 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.959/ DO - 10.5802/jtnb.959 LA - en ID - JTNB_2016__28_3_699_0 ER -
%0 Journal Article %A David Krumm %T Squarefree parts of polynomial values %J Journal de théorie des nombres de Bordeaux %D 2016 %P 699-724 %V 28 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.959/ %R 10.5802/jtnb.959 %G en %F JTNB_2016__28_3_699_0
David Krumm. Squarefree parts of polynomial values. Journal de théorie des nombres de Bordeaux, Tome 28 (2016) no. 3, pp. 699-724. doi : 10.5802/jtnb.959. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.959/
[1] S. Y. An, S. Y. Kim, D. C. Marshall, S. H. Marshall, W. G. McCallum & A. R. Perlis, « Jacobians of genus one curves », J. Number Theory 90 (2001), no. 2, p. 304-315. | DOI | MR | Zbl
[2] M. F. Atiyah & I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969, ix+128 pages. | DOI | Zbl
[3] D. Berend & Y. Bilu, « Polynomials with roots modulo every integer », Proc. Amer. Math. Soc. 124 (1996), no. 6, p. 1663-1671. | DOI | Zbl
[4] W. Bosma, J. Cannon & C. Playoust, « The Magma algebra system. I. The user language », J. Symbolic Comput. 24 (1997), no. 3-4, p. 235-265, Computational algebra and number theory (London, 1993). | DOI | MR | Zbl
[5] J. W. S. Cassels, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991, vi+137 pages. | Zbl
[6] D. A. Cox, Primes of the form
[7] J. R. Doyle, X. Faber & D. Krumm, « Preperiodic points for quadratic polynomials over quadratic fields », New York J. Math. 20 (2014), p. 507-605. | Zbl
[8] D. S. Dummit & R. M. Foote, Abstract algebra, third ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004, xii+932 pages. | Zbl
[9] F. Gouvêa & B. Mazur, « The square-free sieve and the rank of elliptic curves », J. Amer. Math. Soc. 4 (1991), no. 1, p. 1-23. | DOI | MR | Zbl
[10] A. Granville, « Rational and integral points on quadratic twists of a given hyperelliptic curve », Int. Math. Res. Not. IMRN (2007), no. 8, p. Art. ID 027, 24. | DOI | Zbl
[11] M. Hindry & J. H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000, An introduction, xiv+558 pages. | DOI | Zbl
[12] J. W. P. Hirschfeld, G. Korchmáros & F. Torres, « The number of points on an algebraic curve over a finite field », in Surveys in combinatorics 2007, London Math. Soc. Lecture Note Ser., vol. 346, Cambridge Univ. Press, Cambridge, 2007, p. 175-200. | DOI | Zbl
[13] E. W. Howe, K. E. Lauter & J. Top, « Pointless curves of genus three and four », in Arithmetic, geometry and coding theory (AGCT 2003), Sémin. Congr., vol. 11, Soc. Math. France, Paris, 2005, p. 125-141. | Zbl
[14] K. Ireland & M. Rosen, A classical introduction to modern number theory, second ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990, xiv+389 pages. | DOI | Zbl
[15] N. Koblitz, Introduction to elliptic curves and modular forms, second ed., Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1993, x+248 pages. | DOI | Zbl
[16] D. Krumm, « Quadratic points on modular curves », PhD Thesis, University of Georgia (USA), 2013.
[17] J. C. Lagarias & A. M. Odlyzko, « Effective versions of the Chebotarev density theorem », in Algebraic number fields:
[18] F. Lemmermeyer, Reciprocity laws, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000, From Euler to Eisenstein, xx+487 pages. | DOI | Zbl
[19] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002, Translated from the French by Reinie Erné, Oxford Science Publications, xvi+576 pages. | Zbl
[20] D. Maisner & E. Nart, « Abelian surfaces over finite fields as Jacobians », Experiment. Math. 11 (2002), no. 3, p. 321-337, With an appendix by Everett W. Howe. | DOI | MR | Zbl
[21] P. Monsky, « Mock Heegner points and congruent numbers », Math. Z. 204 (1990), no. 1, p. 45-67. | DOI | MR | Zbl
[22] H. L. Montgomery & R. C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007, xviii+552 pages. | Zbl
[23] J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, vol. 322, Springer-Verlag, Berlin, 1999, xviii+571 pages. | DOI | Zbl
[24] B. Poonen, « Squarefree values of multivariable polynomials », Duke Math. J. 118 (2003), no. 2, p. 353-373. | DOI | MR | Zbl
[25] J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, no. 7, Springer-Verlag, New York-Heidelberg, 1973, viii+115 pages. | DOI | Zbl
[26] A. Silverberg, « Open questions in arithmetic algebraic geometry », in Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc., Providence, RI, 2001, p. 83-142. | DOI | Zbl
[27] J. H. Silverman, « Lower bounds for height functions », Duke Math. J. 51 (1984), no. 2, p. 395-403. | DOI | MR | Zbl
[28] —, The arithmetic of elliptic curves, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009, xx+513 pages. | DOI
[29] W. Stein et al., « Sage Mathematics Software (Version 6.2) », The Sage Development Team, 2014, http://www.sagemath.org.
[30] C. L. Stewart & J. Top, « On ranks of twists of elliptic curves and power-free values of binary forms », J. Amer. Math. Soc. 8 (1995), no. 4, p. 943-973. | DOI | MR | Zbl
[31] J. Top, « A remark on the rank of Jacobians of hyperelliptic curves over
Cité par Sources :