Fonction zêta d’Epstein et dilogarithme de Bloch-Wigner
Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 1, pp. 21-34.

Nous exprimons certaines séries d’Epstein normalisées en s=2 comme combinaisons linéaires de dilogarithmes de Bloch-Wigner en des nombres algébriques des corps (Δ) pour les discriminants Δ associés à la forme quadratique.

We give an expression for s=2 of some normalized Epstein series as Bloch-Wigner dilogarithms of algebraic numbers of (Δ), for the discriminants Δ associated to the quadratic form.

Publié le :
DOI : https://doi.org/10.5802/jtnb.748
Mots clés : Epstein series, Bloch-Wigner dilogarithm, Dirichlet L-series, Bloch groups of number fields
@article{JTNB_2011__23_1_21_0,
     author = {Marie Jos\'e Bertin},
     title = {Fonction z\^eta {d{\textquoteright}Epstein} et dilogarithme de {Bloch-Wigner}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {21--34},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {1},
     year = {2011},
     doi = {10.5802/jtnb.748},
     zbl = {1278.11072},
     mrnumber = {2780617},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.748/}
}
Marie José Bertin. Fonction zêta d’Epstein et dilogarithme de Bloch-Wigner. Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 1, pp. 21-34. doi : 10.5802/jtnb.748. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.748/

[1] M.J. Bertin, A Mahler measure of a K3 surface expressed as a Dirichlet L-series. À paraître au Canadian Math. Bulletin.

[2] L. Bianchi, Sui gruppi di sostitutioni lineari con coefficienti a corpi quadratici imaginarii. Math. Ann. 38 (1891), 313–333 et (1892), 332–412.

[3] S. Bloch, Applications of the dilogarithm function in algebraic K-theory and algebraic geometry. Proceedings of the International Symposium in Algebraic Geometry (Kyoto Univ., Kyoto, 1977), 103–114, Kinokuniya Book Store, Tokyo, 1978. | MR 578856 | Zbl 0416.18016

[4] A. Borel, Cohomologie de SL n et valeurs de fonctions zêta aux points entiers. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), 613–636. | Numdam | MR 506168 | Zbl 0382.57027

[5] D.W. Boyd, F. Rodriguez-Villegas & N. Dunfield, Mahler’s measure and the dilogarithm (II)). ArXiv :math/0308041v2 [math. NT], 21 Nov 2005. | MR 1900760

[6] L. Dickson, Introduction to the theory of numbers. Dover, New York, 1957. | MR 1824176 | Zbl 0084.26901

[7] J. Dupont & C. Sah, Scissors congruences, II. J. Pure Appl. Algebra 25 (1982), 159–195. | MR 662760 | Zbl 0496.52004

[8] A. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology. Adv. Math. 114 (1995), 197–318. | MR 1348706 | Zbl 0863.19004

[9] D. Grayson, Dilogarithm computations for K 3 . In Algebraic K-theory (Evanston, 1980), ed. E. Friedlander and M. Stein, 168–178, Lecture Notes in Math. 854, Springer, Berlin, 1981. | MR 618304 | Zbl 0509.18017

[10] J. Huard, P. Kaplan & K. Williams, The Chowla-Selberg formula for genera. Acta Arith. 73 (1995), 271–301. | EuDML 206821 | MR 1364463 | Zbl 0855.11018

[11] G. Humbert, Sur la mesure des classes d’Hermite de discriminant donné dans un corps quadratique imaginaire, et sur certains volumes non euclidiens. Comptes Rendus (Paris) 169 (1919), 448–454. | JFM 47.0138.01

[12] W. Neumann & D. Zagier, Volumes of hyperbolic 3-manifolds. Topology 24 (1985), 307–332. | MR 815482 | Zbl 0589.57015

[13] A.A. Suslin, K 3 of a field, and the Bloch group, Galois theory, rings, algebraic groups and their applications. Trudy Mat. Inst. Steklov 183 (1990), 180–199. | MR 1092031 | Zbl 0741.19005

[14] R. Swan, Generators and relations for certain special linear groups. Bull. AMS 74 (1968), 576–581. | MR 224724 | Zbl 0221.20061

[15] W. Thurston, The geometry and topology of 3-manifolds. Chapter 7 “Computation of volume” by J. Milnor, Princeton Univ. Mimeographed Notes.

[16] K. Williams, Some Lambert Series Expansions of Products of Theta functions. The Ramanujan Journal 3 (1999), 367–384. | MR 1738903 | Zbl 0938.11017

[17] D. Zagier, The Dilogarithm Function, Frontiers in number theory, physics, and geometry II. 3-65, Berlin, Springer, 2007. | MR 2290758 | Zbl 1176.11026

[18] D. Zagier, Hyperbolic manifolds and special values of Dedekind zeta-functions. Invent. Math. 83 (1986), 285–301. | EuDML 143313 | MR 818354 | Zbl 0591.12014

[19] D. Zagier & H. Gangl, Classical and elliptic polylogarithms and special values of L-series. In The Arithmetic and Geometry of Algebraic Cycles, Nato Sciences Series C 548, 561–615, Kluwer, Dordrecht, 2000. | MR 1744961 | Zbl 0990.11041

[20] I. Zucker & R. McPhedran, Dirichlet L-series with real and complex characters and their application to solving double sums. ArXiv :0708.1224v1 [math-ph], 9 Aug. 2007, 1–21. | MR 2395506 | Zbl 1243.11085

[21] I. Zucker & M. Robertson, A systematic approach to the evaluation of (m,n0,0) (am 2 +bmn+cn 2 ) -s . J. Phys. A : Math. Gen., Vol. 9, No. 8 (1976), 1215–1225. | MR 412115 | Zbl 0338.10038

Cité par document(s). Sources :