Quantitative versions of the Subspace Theorem and applications
Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 1, pp. 35-57.

De nouvelles applications du théorème du sous-espace de Wolfgang Schmidt, certaines assez inattendues, ont été trouvées lors de la dernière décennie. Nous en présentons quelques-unes, en insistant tout particulièrement sur les conséquences des versions quantitatives de ce théorème, notamment concernant des questions de transcendance.

During the last decade, several quite unexpected applications of the Schmidt Subspace Theorem were found. We survey some of these, with a special emphasize on the consequences of quantitative statements of this theorem, in particular regarding transcendence questions.

@article{JTNB_2011__23_1_35_0,
     author = {Yann Bugeaud},
     title = {Quantitative versions of the {Subspace} {Theorem} and applications},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {35--57},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {1},
     year = {2011},
     doi = {10.5802/jtnb.749},
     zbl = {1272.11089},
     mrnumber = {2780618},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.749/}
}
Yann Bugeaud. Quantitative versions of the Subspace Theorem and applications. Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 1, pp. 35-57. doi : 10.5802/jtnb.749. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.749/

[1] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 1–20. | MR 2233683 | Zbl 1195.11093

[2] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases. Ann. of Math. 165 (2007), 547–565. | MR 2299740 | Zbl 1195.11094

[3] B. Adamczewski and Y. Bugeaud, On the Maillet–Baker continued fractions. J. reine angew. Math. 606 (2007), 105–121. | MR 2337643 | Zbl 1145.11054

[4] B. Adamczewski and Y. Bugeaud, Palindromic continued fractions. Ann. Inst. Fourier (Grenoble) 57 (2007), 1557–1574. | EuDML 10270 | Numdam | MR 2364142 | Zbl 1126.11036

[5] B. Adamczewski et Y. Bugeaud, Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt. Proc. London Math. Soc. 101 (2010), 1–31. | MR 2661240 | Zbl 1200.11054

[6] B. Adamczewski et Y. Bugeaud, Nombres réels de complexité sous-linéaire : mesures d’irrationalité et de transcendance. J. reine angew. Math. À paraître. | MR 2831513 | Zbl 1255.11037

[7] B. Adamczewski, Y. Bugeaud, and L. Davison, Continued fractions and transcendental numbers. Ann. Inst. Fourier (Grenoble) 56 (2006), 2093–2113. | EuDML 10198 | Numdam | MR 2290775 | Zbl 1152.11034

[8] B. Adamczewski, Y. Bugeaud et F. Luca, Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris 339 (2004), 11–14. | MR 2075225 | Zbl 1119.11019

[9] P. B. Allen, On the multiplicity of linear recurrence sequences. J. Number Theory 126 (2007), 212–216. | MR 2354929 | Zbl 1133.11006

[10] J.-P. Allouche, Nouveaux résultats de transcendance de réels à développements non aléatoire. Gaz. Math. 84 (2000), 19–34. | MR 1766087

[11] F. Amoroso and E. Viada, Small points on subvarieties of a torus. Duke Math. J. 150 (2009), 407–442. | MR 2582101 | Zbl pre05688238

[12] F. Amoroso and E. Viada, On the zeros of linear recurrence sequences. Preprint.

[13] A. Baker, On Mahler’s classification of transcendental numbers. Acta Math. 111 (1964), 97–120. | MR 157943 | Zbl 0147.03403

[14] Yu. Bilu, The many faces of the subspace theorem [after Adamczewski, Bugeaud, Corvaja, Zannier...]. Séminaire Bourbaki. Vol. 2006/2007. Astérisque No. 317 (2008), Exp. No. 967, vii, 1–38. | MR 2487729 | Zbl pre05382585

[15] E. Bombieri and W. Gubler, Heights in Diophantine geometry. New Mathematical Monographs, vol. 4, Cambridge University Press, 2006. | MR 2216774 | Zbl 1115.11034

[16] Y. Bugeaud, Approximation by algebraic numbers. Cambridge Tracts in Mathematics 160, Cambridge, 2004. | MR 2136100 | Zbl 1055.11002

[17] Y. Bugeaud, Extensions of the Cugiani-Mahler Theorem. Ann. Scuola Normale Superiore di Pisa 6 (2007), 477–498. | Numdam | MR 2370270 | Zbl 1139.11032

[18] Y. Bugeaud, An explicit lower bound for the block complexity of an algebraic number. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), 229–235. | MR 2439519 | Zbl pre05787954

[19] Y. Bugeaud, On the approximation to algebraic numbers by algebraic numbers. Glas. Mat. 44 (2009), 323–331. | MR 2587305 | Zbl 1194.11076

[20] Y. Bugeaud, P. Corvaja, and U. Zannier, An upper bound for the G.C.D. of a n -1 and b n -1. Math. Z. 243 (2003), 79–84. | MR 1953049 | Zbl 1021.11001

[21] Y. Bugeaud and J.-H. Evertse, On two notions of complexity of algebraic numbers. Acta Arith. 133 (2008), 221–250. | MR 2434602 | Zbl pre05309410

[22] Y. Bugeaud and J.-H. Evertse, Approximation of complex algebraic numbers by algebraic numbers of bounded degree. Ann. Scuola Normale Superiore di Pisa 8 (2009), 333–368. | Numdam | MR 2548250 | Zbl 1176.11031

[23] Y. Bugeaud and F. Luca, A quantitative lower bound for the greatest prime factor of (ab+1)(bc+1)(ca+1). Acta Arith. 114 (2004), 275–294. | MR 2071083 | Zbl 1122.11060

[24] P. Bundschuh und A. Pethő, Zur Transzendenz gewisser Reihen. Monatsh. Math. 104 (1987), 199–223. | MR 918473 | Zbl 0601.10025

[25] P. Corvaja and U. Zannier, Diophantine equations with power sums and universal Hilbert sets. Indag. Math. (N.S.) 9 (1998), 317–332. | MR 1692189 | Zbl 0923.11103

[26] P. Corvaja and U. Zannier, Some new applications of the subspace theorem. Compositio Math. 131 (2002), 319–340. | MR 1905026 | Zbl 1010.11038

[27] P. Corvaja and U. Zannier, On the greatest prime factor of (ab+1)(ac+1). Proc. Amer. Math. Soc. 131 (2003), 1705–1709. | MR 1955256 | Zbl 1077.11052

[28] M. Cugiani, Sull’approssimazione di numeri algebrici mediante razionali. Collectanea Mathematica, Pubblicazioni dell’Istituto di matematica dell’Università di Milano 169, Ed. C. Tanburini, Milano, pagg. 5 (1958).

[29] M. Cugiani, Sulla approssimabilità dei numeri algebrici mediante numeri razionali. Ann. Mat. Pura Appl. 48 (1959), 135–145. | MR 112880 | Zbl 0093.05402

[30] M. Cugiani, Sull’approssimabilità di un numero algebrico mediante numeri algebrici di un corpo assegnato. Boll. Un. Mat. Ital. 14 (1959), 151–162. | MR 117220 | Zbl 0086.26402

[31] H. Davenport and K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 160–167. | MR 77577 | Zbl 0066.29302

[32] E. Dubois et G. Rhin, Approximations rationnelles simultanées de nombres algébriques réels et de nombres algébriques p-adiques. In: Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, 1974), pp. 211–227. Astérisque, Nos. 24–25, Soc. Math. France, Paris, 1975. | MR 374042 | Zbl 0305.10031

[33] J.-H. Evertse, On sums of S-units and linear recurrences. Compositio Math. 53 (1984), 225–244. | Numdam | MR 766298 | Zbl 0547.10008

[34] J.-H. Evertse, An explicit version of Faltings’ product theorem and an improvement of Roth’s lemma. Acta Arith. 73 (1995), 215–248. | MR 1364461 | Zbl 0857.11034

[35] J.-H. Evertse, The number of algebraic numbers of given degree approximating a given algebraic number. In: Analytic number theory (Kyoto, 1996), 53–83, London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge, 1997. | MR 1694985 | Zbl 0919.11048

[36] J.-H. Evertse, On the Quantitative Subspace Theorem. Zapiski Nauchnyk Seminarov POMI 377 (2010), 217–240.

[37] J.-H. Evertse and R. G. Ferretti, A further quantitative improvement of the Absolute Subspace Theorem. Preprint.

[38] J.-H. Evertse and K. Győry, Finiteness criteria for decomposable form equations. Acta Arith. 50 (1988), 357–379. | MR 961695 | Zbl 0595.10013

[39] J.-H. Evertse and K. Győry, The number of families of solutions of decomposable form equations. Acta Arith. 80 (1997), 367–394. | MR 1450929 | Zbl 0886.11015

[40] J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, On S-unit equations in two unknowns. Invent. Math. 92 (1988), 461–477. | MR 939471 | Zbl 0662.10012

[41] J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, S-unit equations and their applications. In: New advances in transcendence theory (Durham, 1986), 110–174, Cambridge Univ. Press, Cambridge, 1988. | MR 971998 | Zbl 0658.10023

[42] J.-H. Evertse and H.P. Schlickewei, A quantitative version of the Absolute Subspace Theorem. J. reine angew. Math. 548 (2002), 21–127. | MR 1915209 | Zbl 1026.11060

[43] J.-H. Evertse, H.P. Schlickewei, and W. M. Schmidt, Linear equations in variables which lie in a multiplicative group. Ann. of Math. 155 (2002), 807–836. | MR 1923966 | Zbl 1026.11038

[44] S. Ferenczi and Ch. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory 67 (1997), 146–161. | MR 1486494 | Zbl 0895.11029

[45] K. Győry, Some recent applications of S-unit equations. Journées Arithmétiques, 1991 (Geneva). Astérisque No. 209 (1992), 11, 17–38. | MR 1211001 | Zbl 0792.11005

[46] K. Győry, On the numbers of families of solutions of systems of decomposable form equations. Publ. Math. Debrecen 42 (1993), 65–101. | MR 1208854 | Zbl 0792.11004

[47] K. Győry, On the irreducibility of neighbouring polynomials. Acta Arith. 67 (1994), 283–294. | MR 1292740 | Zbl 0814.11050

[48] K. Győry, A. Sárközy and C. L. Stewart, On the number of prime factors of integers of the form ab+1. Acta Arith. 74 (1996), 365–385. | MR 1378230 | Zbl 0857.11047

[49] S. Hernández and F. Luca, On the largest prime factor of (ab+1)(ac+1)(bc+1). Bol. Soc. Mat. Mexicana 9 (2003), 235–244. | MR 2029272 | Zbl 1108.11030

[50] J. F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen. Monatsh. Math. Phys. 48 (1939), 176–189. | MR 845 | Zbl 0021.20804

[51] M. Laurent, Équations diophantiennes exponentielles. Invent. Math. 78 (1984), 299–327. | MR 767195 | Zbl 0554.10009

[52] K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II. J. reine angew. Math. 166 (1932), 118–150. | Zbl 0003.38805

[53] K. Mahler, Lectures on Diophantine approximation, Part 1: g-adic numbers and Roth’s theorem. University of Notre Dame, Ann Arbor, 1961. | MR 142509 | Zbl 0158.29903

[54] K. Mahler, Some suggestions for further research. Bull. Austral. Math. Soc. 29 (1984), 101–108. | MR 732177 | Zbl 0517.10001

[55] M. Mignotte, Quelques remarques sur l’approximation rationnelle des nombres algébriques. J. reine angew. Math. 268/269 (1974), 341–347. | MR 357336 | Zbl 0284.10011

[56] M. Mignotte, An application of W. Schmidt’s theorem: transcendental numbers and golden number. Fibonacci Quart. 15 (1977), 15–16. | MR 429781 | Zbl 0353.10025

[57] A. J. van der Poorten and H. P. Schlickewei, The growth condition for recurrence sequences. Macquarie Univ. Math. Rep. 82–0041, North Ryde, Australia (1982).

[58] D. Ridout, Rational approximations to algebraic numbers. Mathematika 4 (1957), 125–131. | MR 93508 | Zbl 0079.27401

[59] K. F. Roth, Rational approximations to algebraic numbers. Mathematika 2 (1955), 1–20; corrigendum, 168. | MR 72182 | Zbl 0064.28501

[60] H. P. Schlickewei, Die p-adische Verallgemeinerung des Satzes von Thue-Siegel-Roth-Schmidt. J. reine angew. Math. 288 (1976), 86–105. | MR 422166 | Zbl 0333.10018

[61] H. P. Schlickewei, Linearformen mit algebraischen koeffizienten. Manuscripta Math. 18 (1976), 147–185. | MR 401665 | Zbl 0323.10028

[62] H. P. Schlickewei, The 𝔭-adic Thue-Siegel-Roth-Schmidt theorem. Arch. Math. (Basel) 29 (1977), 267–270. | MR 491529 | Zbl 0365.10026

[63] W. M. Schmidt, Über simultane Approximation algebraischer Zahlen durch Rationale. Acta Math. 114 (1965) 159–206. | MR 177948 | Zbl 0136.33802

[64] W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals. Acta Math. 119 (1967), 27–50. | MR 223309 | Zbl 0173.04801

[65] W. M. Schmidt, Simultaneous approximations to algebraic numbers by rationals. Acta Math. 125 (1970), 189–201. | MR 268129 | Zbl 0205.06702

[66] W. M. Schmidt, Norm form equations. Ann. of Math. 96 (1972), 526–551. | MR 314761 | Zbl 0226.10024

[67] W. M. Schmidt, Diophantine Approximation. Lecture Notes in Mathematics 785, Springer, 1980. | MR 568710 | Zbl 0421.10019

[68] W. M. Schmidt, The subspace theorem in Diophantine approximation. Compositio Math. 69 (1989), 121–173. | Numdam | MR 984633 | Zbl 0683.10027

[69] W. M. Schmidt, The number of solutions of norm form equations. Trans. Amer. Math. Soc. 317 (1990), 197–227. | MR 961596 | Zbl 0693.10014

[70] W. M. Schmidt, Diophantine approximations and Diophantine equations. Lecture Notes in Mathematics 1467, Springer, 1991. | MR 1176315 | Zbl 0754.11020

[71] W. M. Schmidt, Zeros of linear recurrence sequences. Publ. Math. Debrecen 56 (2000), 609–630. | MR 1766002 | Zbl 0963.11007

[72] Th. Schneider, Über die Approximation algebraischer Zahlen, J. reine angew. Math. 175 (1936), 182–192.

[73] G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers. II. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2 (1999), 397–399. | MR 1706560 | Zbl 1003.11035

[74] U. Zannier, Some applications of diophantine approximation to diophantine equations (with special emphasis on the Schmidt subspace theorem). Forum, Udine, 2003.

Cité par document(s). Sources :