Let be a positive integer, a finite field of cardinality with . In this paper, inspired by [6, 3, 4] and using a slightly different method, we study the fluctuations in the number of -points on the curve given by the affine model , where is drawn at random uniformly from the set of all monic -th power-free polynomials of degree as . The method also enables us to study the fluctuations in the number of -points on the same family of curves arising from the set of monic irreducible polynomials.
Soit un entier, un corps fini de cardinal avec . Dans cet article, inspiré par [6, 3, 4] et en utilisant une méthode légèrement différente, nous étudions les fluctuations du nombre de -points de la courbe donnée par le modèle affine , où parcourt aléatoirement et uniformément l’ensemble des polynômes unitaires, sans puissance -ième, de degré quand . La méthode nous permet aussi d’étudier les fluctuations du nombre de -points de la même famille de courbes provenant de l’ensemble des polynômes unitaires irréductibles.
@article{JTNB_2010__22_3_755_0, author = {Maosheng Xiong}, title = {The fluctuations in the number of points on a family of curves over a finite field}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {755--769}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {3}, year = {2010}, doi = {10.5802/jtnb.745}, mrnumber = {2769344}, zbl = {1228.11089}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.745/} }
TY - JOUR AU - Maosheng Xiong TI - The fluctuations in the number of points on a family of curves over a finite field JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 755 EP - 769 VL - 22 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.745/ DO - 10.5802/jtnb.745 LA - en ID - JTNB_2010__22_3_755_0 ER -
%0 Journal Article %A Maosheng Xiong %T The fluctuations in the number of points on a family of curves over a finite field %J Journal de théorie des nombres de Bordeaux %D 2010 %P 755-769 %V 22 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.745/ %R 10.5802/jtnb.745 %G en %F JTNB_2010__22_3_755_0
Maosheng Xiong. The fluctuations in the number of points on a family of curves over a finite field. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 755-769. doi : 10.5802/jtnb.745. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.745/
[1] J. Bergström, Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves. Preprint, http://arxiv.org/abs/math/0611813v1, 2006. | MR
[2] P. Billingsley, Probability and Measure. Third ed., Wiley Ser. Probab. Math. Stat., John Wiley & Sons Inc., Ney Youk, 1995, A Wiley-Interscience Publication. | MR
[3] A. Bucur, C. David, B. Feigon, M. Lalín, Statistics for traces of cyclic trigonal curves over finite fields. International Mathematics Research Notices (2010), 932–967. | MR
[4] A. Bucur, C. David, B. Feigon, M. Lalín, Biased statistics for traces of cyclic -fold covers over finite fields. To appear in Proceedings of Women in Numbers, Fields Institute Communications.
[5] P. Diaconis, M. Shahshahani, On the eigenvalues of random matrices. Studies in Applied Probability, J. Appl. Probab. 31A (1994), 49–62. | MR | Zbl
[6] P. Kurlberg, Z. Rudnick, The fluctuations in the number of points on a hyperelliptic curve over a finite field. J. Number Theory Vol. 129 3 (2009), 580–587. | MR
[7] N. M. Katz, P. Sarnak, Random Matrices, Frobenius Eigenvalues, and Monodromy. Amer. Math. Soc. Colloq. Publ., vol. 45, American Mathematical Socitey, Providence, RI, 1999. | MR | Zbl
[8] N. M. Katz, P. Sarnak, Zeroes of zeta functions and symmetry. Bull. Am. Math. Soc. 36 (1999), 1–26. | MR | Zbl
[9] L. A. Knizhnerman, V. Z. Sokolinskii, Some estimates for rational trigonometric sums and sums of Legendre symbols. Uspekhi Mat. Nauk 34 (3 (207))(1979), 199–200. | MR | Zbl
[10] L. A. Knizhnerman, V. Z. Sokolinskii, Trigonometric sums and sums of Legendre symbols with large and small absolute values. Investigations in Number Theory, Saratov. Gos. Univ., Saratov, 1987, 76–89. | MR | Zbl
[11] M. Larsen, The normal distribution as a limit of generalized sato-tate measures. Preprint.
[12] M. Rosen, Number theory in function fields. Graduate Texts in Mathematics, 210, Springer-Verlag, New York, 2002. | MR | Zbl
[13] A. Weil, Sur les Courbes Algébriques et les Variétés qui s’en Déduisent. Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann et Cie., Paris, 1948. iv+85 pp. | MR | Zbl
Cited by Sources: