Let be a finite extension of a global field. Such an extension can be generated over by a single element. The aim of this article is to prove the existence of a ”small” generator in the function field case. This answers the function field version of a question of Ruppert on small generators of number fields.
Soit une extension finie d’un corps global, donc contient un élément primitif , c’est à dire . Dans cet article, nous démontrons l’existence d’un élément primitif de petite hauteur dans le cas d’un corps de fonctions. Notre résultat est la réponse pour les corps de fonctions à une question de Ruppert sur les petits générateurs des corps de nombres.
@article{JTNB_2010__22_3_747_0, author = {Martin Widmer}, title = {Small generators of function fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {747--753}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {3}, year = {2010}, doi = {10.5802/jtnb.744}, mrnumber = {2769343}, zbl = {1233.11120}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.744/} }
TY - JOUR AU - Martin Widmer TI - Small generators of function fields JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 747 EP - 753 VL - 22 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.744/ DO - 10.5802/jtnb.744 LA - en ID - JTNB_2010__22_3_747_0 ER -
Martin Widmer. Small generators of function fields. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 747-753. doi : 10.5802/jtnb.744. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.744/
[1] Algebraic numbers and algebraic functions, Gordon and Breach, New York, 1967 | MR | Zbl
[2] Heights in Diophantine Geometry, Cambridge University Press, 2006 | MR | Zbl
[3] Hyperbolic distribution problems and half-integral weight Masss forms, Invent. Math., Volume 92 (1988), pp. 73-90 | MR | Zbl
[4] Reflection principles and bounds for class group torsion, Int. Math. Res. Not., Volume no.1, Art. ID rnm002 (2007) | MR | Zbl
[5] An inequality for the discriminant of a polynomial, Michigan Math. J., Volume 11 (1964), pp. 257-262 | MR | Zbl
[6] A note on Siegel’s lemma over number fields, Monatsh. Math., Volume 120 (1995), pp. 307-318 | MR | Zbl
[7] Small generators of number fields, Manuscripta math., Volume 96 (1998), pp. 17-22 | MR | Zbl
[8] Lower bounds for height functions, Duke Math. J., Volume 51 (1984), pp. 395-403 | MR | Zbl
[9] Algebraic function fields and codes, Springer, 1993 | MR | Zbl
[10] Siegel’s lemma for function fields, Michigan Math. J., Volume 42 (1995), pp. 147-162 | MR | Zbl
[11] On small generators of number fields, in preparation (2010)
Cited by Sources: