Small generators of function fields
Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 3, pp. 747-753.

Soit 𝕂/k une extension finie d’un corps global, donc 𝕂 contient un élément primitif α, c’est à dire 𝕂=k(α). Dans cet article, nous démontrons l’existence d’un élément primitif de petite hauteur dans le cas d’un corps de fonctions. Notre résultat est la réponse pour les corps de fonctions à une question de Ruppert sur les petits générateurs des corps de nombres.

Let 𝕂/k be a finite extension of a global field. Such an extension can be generated over k by a single element. The aim of this article is to prove the existence of a ”small” generator in the function field case. This answers the function field version of a question of Ruppert on small generators of number fields.

DOI : 10.5802/jtnb.744

Martin Widmer 1

1 Institut für Mathematik A Technische Universität Graz Steyrergasse 30/II 8010 Graz, Austria
@article{JTNB_2010__22_3_747_0,
     author = {Martin Widmer},
     title = {Small generators of function fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {747--753},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {3},
     year = {2010},
     doi = {10.5802/jtnb.744},
     mrnumber = {2769343},
     zbl = {1233.11120},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.744/}
}
TY  - JOUR
AU  - Martin Widmer
TI  - Small generators of function fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2010
SP  - 747
EP  - 753
VL  - 22
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.744/
DO  - 10.5802/jtnb.744
LA  - en
ID  - JTNB_2010__22_3_747_0
ER  - 
%0 Journal Article
%A Martin Widmer
%T Small generators of function fields
%J Journal de théorie des nombres de Bordeaux
%D 2010
%P 747-753
%V 22
%N 3
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.744/
%R 10.5802/jtnb.744
%G en
%F JTNB_2010__22_3_747_0
Martin Widmer. Small generators of function fields. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 3, pp. 747-753. doi : 10.5802/jtnb.744. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.744/

[1] E. Artin Algebraic numbers and algebraic functions, Gordon and Breach, New York, 1967 | MR | Zbl

[2] E. Bombieri; W. Gubler Heights in Diophantine Geometry, Cambridge University Press, 2006 | MR | Zbl

[3] W. Duke Hyperbolic distribution problems and half-integral weight Masss forms, Invent. Math., Volume 92 (1988), pp. 73-90 | MR | Zbl

[4] J. Ellenberg; A. Venkatesh Reflection principles and bounds for class group torsion, Int. Math. Res. Not., Volume no.1, Art. ID rnm002 (2007) | MR | Zbl

[5] K. Mahler An inequality for the discriminant of a polynomial, Michigan Math. J., Volume 11 (1964), pp. 257-262 | MR | Zbl

[6] D. Roy; J. L. Thunder A note on Siegel’s lemma over number fields, Monatsh. Math., Volume 120 (1995), pp. 307-318 | MR | Zbl

[7] W. Ruppert Small generators of number fields, Manuscripta math., Volume 96 (1998), pp. 17-22 | MR | Zbl

[8] J. Silverman Lower bounds for height functions, Duke Math. J., Volume 51 (1984), pp. 395-403 | MR | Zbl

[9] H. Stichtenoth Algebraic function fields and codes, Springer, 1993 | MR | Zbl

[10] J. L. Thunder Siegel’s lemma for function fields, Michigan Math. J., Volume 42 (1995), pp. 147-162 | MR | Zbl

[11] J. D. Vaaler; M. Widmer On small generators of number fields, in preparation (2010)

  • Michael Rosen A geometric proof of Hermite's theorem in function fields, Journal de Théorie des Nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 799-813 | DOI:10.5802/jtnb.1001 | Zbl:1396.11118
  • Siman Wong A field theoretic proof of Hermite's theorem for function fields, Archiv der Mathematik, Volume 105 (2015) no. 4, pp. 351-360 | DOI:10.1007/s00013-015-0818-6 | Zbl:1327.11083
  • Jeffrey D. Vaaler; Martin Widmer A note on generators of number fields, Diophantine methods, lattices, and arithmetic theory of quadratic forms. Proceedings of the international workshop, Banff International Research Station (BIRS), Alberta, Canada, November 13–18, 2011, Providence, RI: American Mathematical Society (AMS), 2013, pp. 201-211 | Zbl:1307.11108

Cité par 3 documents. Sources : zbMATH