The main goal of this paper is to prove a formula that expresses the limit behaviour of Dedekind zeta functions for in families of number fields, assuming that the Generalized Riemann Hypothesis holds. This result can be viewed as a generalization of the Brauer–Siegel theorem. As an application we obtain a limit formula for Euler–Kronecker constants in families of number fields.
Le but de cet article est de démontrer une formule qui exprime le comportement asymptotique de la fonction zêta de Dedekind dans des familles de corps globaux pour en supposant que l’Hypothèse de Riemann Généralisée est vérifiée. On peut voir ce résultat comme une généralisation du théorème de Brauer-Siegel. Comme corollaire, on obtient une formule limite pour les constants d’Euler-Kronecker dans des familles de corps globaux.
@article{JTNB_2010__22_3_771_0, author = {Alexey Zykin}, title = {Asymptotic properties of {Dedekind} zeta functions in families of number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {771--778}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {3}, year = {2010}, doi = {10.5802/jtnb.746}, mrnumber = {2769345}, zbl = {1258.11095}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.746/} }
TY - JOUR AU - Alexey Zykin TI - Asymptotic properties of Dedekind zeta functions in families of number fields JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 771 EP - 778 VL - 22 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.746/ DO - 10.5802/jtnb.746 LA - en ID - JTNB_2010__22_3_771_0 ER -
%0 Journal Article %A Alexey Zykin %T Asymptotic properties of Dedekind zeta functions in families of number fields %J Journal de théorie des nombres de Bordeaux %D 2010 %P 771-778 %V 22 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.746/ %R 10.5802/jtnb.746 %G en %F JTNB_2010__22_3_771_0
Alexey Zykin. Asymptotic properties of Dedekind zeta functions in families of number fields. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 771-778. doi : 10.5802/jtnb.746. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.746/
[1] R. Brauer, On zeta-functions of algebraic number fields. Amer. J. Math. 69 (1947), Num. 2, 243–250. | MR | Zbl
[2] Y. Ihara, On the Euler–Kronecker constants of global fields and primes with small norms. Algebraic geometry and number theory, 407–451, Progr. Math., 253, Birkhaüser Boston, Boston, MA, 2006. | MR | Zbl
[3] H. Iwaniec, E. Kowalski, Analytic number theory. American Mathematical Society Colloquium Publications, 53. AMS, Providence, RI, 2004. | MR | Zbl
[4] H. Iwaniec, W. Luo, P. Sarnak, Low lying zeros of families of -functions. Inst. Hautes Études Sci. Publ. Math., Num. 91 (2000), 55–131. | Numdam | MR | Zbl
[5] H. Iwaniec, P. Sarnak, Dirichlet -functions at the central point. Number theory in progress, Vol. 2 (Zakopane-Koscielisko, 1997), 941–952, de Gruyter, Berlin, 1999. | MR | Zbl
[6] H. Iwaniec, P. Sarnak, The nonvanishing of central values of automorphic -functions and Siegel’s zero. Israel J. Math. A 120 (2000), 155–177. | MR | Zbl
[7] S. Lang, Algebraic number theory. 2nd ed. Graduate Texts in Mathematics 110, Springer-Verlag, New York, 1994. | MR | Zbl
[8] H. M. Stark, Some effective cases of the Brauer-Siegel Theorem. Invent. Math. 23(1974), pp. 135–152. | MR | Zbl
[9] E. C. Titchmarsh, The theory of functions. 2nd ed. London: Oxford University Press. X, 1975. | MR | Zbl
[10] M. A. Tsfasman, Asymptotic behaviour of the Euler-Kronecker constant. Algebraic geometry and number theory, 453–458, Progr. Math., 253, Birkhaüser Boston, Boston, MA, 2006. | MR | Zbl
[11] M. A. Tsfasman, S. G. Vlăduţ, Infinite global fields and the generalized Brauer–Siegel Theorem. Moscow Mathematical Journal, Vol. 2(2002), Num. 2, 329–402. | MR | Zbl
[12] A. Zykin, Brauer–Siegel and Tsfasman–Vlăduţ theorems for almost normal extensions of global fields. Moscow Mathematical Journal, Vol. 5 (2005), Num 4, 961–968. | MR | Zbl
[13] A. Zykin, Asymptotic properties of zeta functions over finite fields. Preprint.
Cited by Sources: