Manin’s conjecture for a singular sextic del Pezzo surface
Journal de Théorie des Nombres de Bordeaux, Tome 22 (2010) no. 3, pp. 675-701.

On démontre la conjecture de Manin pour une surface de del Pezzo de degré six qui a une singularité de type A 2 . De plus, on établit un prolongement méromorphe et une expression explicite de la fonction zêta des hauteurs associées.

We prove Manin’s conjecture for a del Pezzo surface of degree six which has one singularity of type A 2 . Moreover, we achieve a meromorphic continuation and explicit expression of the associated height zeta function.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.739
Classification : 11D45,  14G05,  14G10
@article{JTNB_2010__22_3_675_0,
     author = {Daniel Loughran},
     title = {Manin{\textquoteright}s conjecture for a singular sextic del {Pezzo} surface},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {675--701},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {3},
     year = {2010},
     doi = {10.5802/jtnb.739},
     zbl = {1258.14029},
     mrnumber = {2769338},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.739/}
}
TY  - JOUR
AU  - Daniel Loughran
TI  - Manin’s conjecture for a singular sextic del Pezzo surface
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2010
DA  - 2010///
SP  - 675
EP  - 701
VL  - 22
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.739/
UR  - https://zbmath.org/?q=an%3A1258.14029
UR  - https://www.ams.org/mathscinet-getitem?mr=2769338
UR  - https://doi.org/10.5802/jtnb.739
DO  - 10.5802/jtnb.739
LA  - en
ID  - JTNB_2010__22_3_675_0
ER  - 
Daniel Loughran. Manin’s conjecture for a singular sextic del Pezzo surface. Journal de Théorie des Nombres de Bordeaux, Tome 22 (2010) no. 3, pp. 675-701. doi : 10.5802/jtnb.739. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.739/

[BB07] R. de la Bretèche and T. D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree four, I. Michigan Mathematical Journal 55 (2007), 51–80. | MR 2320172 | Zbl 1132.14019

[Bro07] T. D. Browning, An overview of Manin’s conjecture for del Pezzo surfaces. Analytic number theory - A tribute to Gauss and Dirichlet (Goettingen, 20th June - 24th June, 2005), Clay Mathematics Proceedings 7 (2007), 39–56. | MR 2362193 | Zbl 1134.14017

[CT88] D. F. Coray and M. A. Tsfasman, Arithmetic on singular Del Pezzo surfces. Proc. London Math. Soc (3) 57(1) (1988), 25–87. | MR 940430 | Zbl 0653.14018

[CT02] A. Chambert-Loir and Y. Tschinkel, On the Distribution of points of bounded height on equivariant compactifications of vector groups. Invent. Math. 148 (2002), 421–452. | MR 1906155 | Zbl 1067.11036

[CTS87] J.-L. Colliot-Thélène and J.-J. Sansuc, La descente sur les variétés rationnelles. II. Duke Math. J. 54(2) (1987), 375–492. | MR 899402 | Zbl 0659.14028

[Der06] U. Derenthal, Singular Del Pezzo surfaces whose universal torsors are hypersurfaces. arXiv:math.AG/0604194 (2006).

[Der07] U. Derenthal, On a constant arising in Manin’s Conjecture for Del Pezzo surfaces. Math. Res. Letters 14 (2007), 481–489. | MR 2318651 | Zbl 1131.14042

[DL10] U. Derenthal and D. Loughran, Singular del Pezzo surfaces that are equivariant compactifications. Proceedings of Hausdorff Trimester on Diophantine equations in: Zapiski Nauchnykh Seminarov (POMI) 377 (2010), 26–43.

[DT07] U. Derenthal and Y. Tschinkel, Universal torsors over Del Pezzo surfaces and rational points. Equidistribution in Number theory, An Introduction, (A. Granville, Z. Rudnick eds.), NATO Science Series II, 237, Springer, (2007), 169–196. | MR 2290499 | Zbl 1143.14017

[FMT89] J. Franke, Y. I. Manin and Y. Tschinkel, Rational Points of Bounded Height on Fano Varieties. Invent. Math 95 (1989), 421–435. | MR 974910 | Zbl 0674.14012

[Har77] R. Hartshorne, Algebraic Geometry. Springer-Verlag, New York, 1977. | MR 463157 | Zbl 0367.14001

[HB79] D. R. Heath-Brown, The fourth power moment of the Riemann zeta function. Proc. London Math. Soc. 38 (1979), 385–422. | MR 532980 | Zbl 0403.10018

[HK00] Y. Hu and S. Keel, Mori dream spaces and GIT. Michigan Math. J., dedicated to William Fulton on the occasion of his 60th birthday, 48 (2000) 331–348. | MR 1786494 | Zbl 1077.14554

[Man86] Y. I. Manin, Cubic Forms. North-Holland Mathematical Library 4, North-Holland Publishing Co., 2nd ed. 1986. | MR 833513 | Zbl 0582.14010

[Pey95] E. Peyre, Hauteurs et measures de Tamagawa sur les variétiés de Fano. Duke Math. J., 79(1) (1995), 101–218. | MR 1340296 | Zbl 0901.14025

[Sal98] P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque, Nombre et répartition de points de hauteur bornnée (Paris, 1996), 251 (1998), 91–258. | MR 1679841 | Zbl 0959.14007

[Sko01] A. Skorobogatov, Torsors and rational points. Cambridge University press, 2001. | MR 1845760 | Zbl 0972.14015

[Ten95] G. Tenenbaum, Introduction to analytic and probabilistic number theory. Cambridge University press, 1995. | MR 1342300 | Zbl 0831.11001

[Tit86] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function. Oxford University press, 2nd ed. edited by D.R.Heath-Brown, 1986. | MR 882550 | Zbl 0601.10026

Cité par Sources :