Steinitz classes of some abelian and nonabelian extensions of even degree
Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 607-628.

The Steinitz class of a number field extension K/k is an ideal class in the ring of integers 𝒪 k of k, which, together with the degree [K:k] of the extension determines the 𝒪 k -module structure of 𝒪 K . We denote by R t (k,G) the set of classes which are Steinitz classes of a tamely ramified G-extension of k. We will say that those classes are realizable for the group G; it is conjectured that the set of realizable classes is always a group.

In this paper we will develop some of the ideas contained in [7] to obtain some results in the case of groups of even order. In particular we show that to study the realizable Steinitz classes for abelian groups, it is enough to consider the case of cyclic groups of 2-power degree.

La classe de Steinitz d’une extension de corps de nombres K/k est une classe d’idéaux dans l’anneau des entiers 𝒪 k de k, qui avec le degré [K:k] de l’extension détermine la structure de O K comme O k -module. Nous dénotons par R t (k,G) l’ensemble des classes qui sont classes de Steinitz d’une extension modérée du k avec groupe de Galois G. Nous dirons que ces classes sont réalisables pour le groupe G ; il est conjecturé que l’ensemble des classes réalisables est toujours un groupe.

Dans cet article nous allons développer des idées contenues dans [7] pour obtenir des résultats dans le cas de groupes d’ordre pair. En particulier nous allons montrer que l’étude des classes de Steinitz réalisables pour les groupes abéliens peut être réduit au cas des groupes cycliques d’ordre une puissance de 2.

@article{JTNB_2010__22_3_607_0,
     author = {Alessandro Cobbe},
     title = {Steinitz classes of some abelian and nonabelian extensions of even degree},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {607--628},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {3},
     year = {2010},
     doi = {10.5802/jtnb.735},
     mrnumber = {2769334},
     zbl = {1267.11112},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.735/}
}
TY  - JOUR
AU  - Alessandro Cobbe
TI  - Steinitz classes of some abelian and nonabelian extensions of even degree
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2010
SP  - 607
EP  - 628
VL  - 22
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.735/
DO  - 10.5802/jtnb.735
LA  - en
ID  - JTNB_2010__22_3_607_0
ER  - 
%0 Journal Article
%A Alessandro Cobbe
%T Steinitz classes of some abelian and nonabelian extensions of even degree
%J Journal de théorie des nombres de Bordeaux
%D 2010
%P 607-628
%V 22
%N 3
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.735/
%R 10.5802/jtnb.735
%G en
%F JTNB_2010__22_3_607_0
Alessandro Cobbe. Steinitz classes of some abelian and nonabelian extensions of even degree. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 607-628. doi : 10.5802/jtnb.735. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.735/

[1] C. Bruche, Classes de Steinitz d’extensions non abéliennes de degré p 3 . Acta Arith. 137 (2) (2009), 177–191. | MR

[2] C. Bruche and B. Sodaïgui, On realizable Galois module classes and Steinitz classes of nonabelian extensions. J. Number Theory 128 (4) (2008), 954–978. | MR | Zbl

[3] N. Byott, C. Greither and B. Sodaïgui, Classes réalisables d’extensions non abéliennes. J. Reine Angew. Math. 601 (2006), 1–27. | MR | Zbl

[4] J. E. Carter, Steinitz classes of a nonabelian extension of degree p 3 . Colloq. Math. 71 (2) (1996), 297–303. | MR | Zbl

[5] J. E. Carter, Steinitz classes of nonabelian extensions of degree p 3 . Acta Arith. 78 (3) (1997), 297–303. | MR | Zbl

[6] J. E. Carter and B. Sodaïgui, Classes de Steinitz d’extensions quaternioniennes généralisées de degré 4p r . J. Lond. Math. Soc. (2) 76 (2) (2007), 331–344. | MR | Zbl

[7] A. Cobbe, Steinitz classes of tamely ramified Galois extensions of algebraic number fields. J. Number Theory 130 (5) (2010), 1129–1154. | MR

[8] A. Cobbe, Steinitz classes of tamely ramified Galois extensions of algebraic number fields. PhD thesis, Scuola Normale Superiore, Pisa, 2010. | MR

[9] L. P. Endo, Steinitz classes of tamely ramified Galois extensions of algebraic number fields. PhD thesis, University of Illinois at Urbana-Champaign, 1975. | MR

[10] M. Godin and B. Sodaïgui, Classes de Steinitz d’extensions à groupe de Galois A 4 . J. Théor. Nombres Bordeaux 14 (1) (2002), 241–248. | Numdam | MR | Zbl

[11] M. Godin and B. Sodaïgui, Module structure of rings of integers in octahedral extensions. Acta Arith. 109 (4) (2003), 321–327. | MR | Zbl

[12] S. Lang, Algebraic number theory. GTM 110, Springer-Verlag, New York, second edition, 1994. | MR | Zbl

[13] R. L. Long, Steinitz classes of cyclic extensions of prime degree. J. Reine Angew. Math. 250 (1971), 87–98. | MR | Zbl

[14] R. L. Long, Steinitz classes of cyclic extensions of degree l r . Proc. Amer. Math. Soc. 49 (1975), 297–304. | MR | Zbl

[15] R. Massy and B. Sodaïgui, Classes de Steinitz et extensions quaternioniennes. Proyecciones 16 (1) (1997), 1–13. | MR | Zbl

[16] L. R. McCulloh, Cyclic extensions without relative integral bases. Proc. Amer. Math. Soc. 17 (1966), 1191–1194. | MR | Zbl

[17] L. R. McCulloh, Galois module structure of abelian extensions. J. Reine Angew. Math. 375/376 (1987), 259–306. | MR | Zbl

[18] W. Narkiewicz, Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics, Springer-Verlag, Berlin, third edition, 2004 | MR | Zbl

[19] J. Neukirch, Class field theory. Volume 280 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1986. | MR | Zbl

[20] J. J. Rotman, An introduction to the theory of groups. GTM 148, Springer-Verlag, New York, fourth edition, 1995. | MR | Zbl

[21] B. Sodaïgui, Classes de Steinitz d’extensions galoisiennes relatives de degré une puissance de 2 et problème de plongement, Illinois J. Math., 43 (1) (1999), 47–60. | MR | Zbl

[22] B. Sodaïgui, Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8. J. Algebra, 223 (1) (2000), 367–378. | MR | Zbl

[23] E. Soverchia, Steinitz classes of metacyclic extensions. J. London Math. Soc. (2), 66 (1) (2002), 61–72. | MR | Zbl

Cited by Sources: