Bernoulli-Carlitz fractions and -Zeta operators
We introduce a deformation of Dirichlet series of one complex variable , which is given for each complex number by an operator acting on formal power series without constant term in the variable . We prove that the Bernoulli-Carlitz fractions are obtained as the image of some simple polynomials in by the operators corresponding to the Riemann function at negative integers.
On introduit une déformation des séries de Dirichlet d’une variable complexe , sous la forme d’un opérateur pour chaque nombre complexe , agissant sur les séries formelles sans terme constant en une variable . On montre que les fractions de Bernoulli-Carlitz sont les images de certains polynômes en par les opérateurs associés à la fonction de Riemann aux entiers négatifs.
@article{JTNB_2010__22_3_575_0, author = {Fr\'ed\'eric Chapoton}, title = {Fractions de {Bernoulli-Carlitz} et op\'erateurs $q${-Zeta}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {575--581}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {3}, year = {2010}, doi = {10.5802/jtnb.733}, mrnumber = {2769332}, zbl = {1267.11097}, language = {fr}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.733/} }
TY - JOUR AU - Frédéric Chapoton TI - Fractions de Bernoulli-Carlitz et opérateurs $q$-Zeta JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 575 EP - 581 VL - 22 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.733/ DO - 10.5802/jtnb.733 LA - fr ID - JTNB_2010__22_3_575_0 ER -
%0 Journal Article %A Frédéric Chapoton %T Fractions de Bernoulli-Carlitz et opérateurs $q$-Zeta %J Journal de théorie des nombres de Bordeaux %D 2010 %P 575-581 %V 22 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.733/ %R 10.5802/jtnb.733 %G fr %F JTNB_2010__22_3_575_0
Frédéric Chapoton. Fractions de Bernoulli-Carlitz et opérateurs $q$-Zeta. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 575-581. doi : 10.5802/jtnb.733. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.733/
[1] -Bernoulli numbers and polynomials, Duke Math. J., Volume 15 (1948), pp. 987-1000 | MR | Zbl
[2] -Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., Volume 76 (1954), pp. 332-350 | MR | Zbl
[3] A rooted-trees -series lifting a one-parameter family of Lie idempotents, Algebra Number Theory, Volume 3 (2009) no. 6, pp. 611-636 | DOI | MR | Zbl
[4] A variation of Euler’s approach to values of the Riemann zeta function, Kyushu J. Math., Volume 57 (2003) no. 1, pp. 175-192 | MR | Zbl
[5] -Riemann zeta function, Int. J. Math. Math. Sci. (2004) no. 9-12, pp. 599-605 | MR | Zbl
[6] On Carlitz’s -Bernoulli numbers, J. Number Theory, Volume 14 (1982) no. 3, pp. 332-339 | MR | Zbl
[7] A spectral interpretation for the zeros of the Riemann zeta function, Mathematisches Institut, Georg-August-Universität Göttingen : Seminars Winter Term 2004/2005, Universitätsdrucke Göttingen, Göttingen, 2005, pp. 117-137 | MR | Zbl
[8] -analogue of Riemann’s -function and -Euler numbers, J. Number Theory, Volume 31 (1989) no. 3, pp. 346-362 | MR | Zbl
[9] A note on -analogues of the Dirichlet series and -Bernoulli numbers, J. Number Theory, Volume 39 (1991) no. 3, pp. 251-256 | MR | Zbl
Cited by Sources: