Fractions de Bernoulli-Carlitz et opérateurs q-Zeta
Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 575-581.

Bernoulli-Carlitz fractions and q-Zeta operators

We introduce a deformation of Dirichlet series of one complex variable s, which is given for each complex number s by an operator acting on formal power series without constant term in the variable q. We prove that the Bernoulli-Carlitz fractions are obtained as the image of some simple polynomials in q by the operators corresponding to the Riemann ζ function at negative integers.

On introduit une déformation des séries de Dirichlet d’une variable complexe s, sous la forme d’un opérateur pour chaque nombre complexe s, agissant sur les séries formelles sans terme constant en une variable q. On montre que les fractions de Bernoulli-Carlitz sont les images de certains polynômes en q par les opérateurs associés à la fonction ζ de Riemann aux entiers négatifs.

DOI: 10.5802/jtnb.733
Frédéric Chapoton 1

1 Institut Camille Jordan Université Claude Bernard Lyon 1 Bâtiment Braconnier 21 Avenue Claude Bernard 69622 Villeurbanne Cedex, France
@article{JTNB_2010__22_3_575_0,
     author = {Fr\'ed\'eric Chapoton},
     title = {Fractions de {Bernoulli-Carlitz} et op\'erateurs $q${-Zeta}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {575--581},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {3},
     year = {2010},
     doi = {10.5802/jtnb.733},
     mrnumber = {2769332},
     zbl = {1267.11097},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.733/}
}
TY  - JOUR
AU  - Frédéric Chapoton
TI  - Fractions de Bernoulli-Carlitz et opérateurs $q$-Zeta
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2010
SP  - 575
EP  - 581
VL  - 22
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.733/
DO  - 10.5802/jtnb.733
LA  - fr
ID  - JTNB_2010__22_3_575_0
ER  - 
%0 Journal Article
%A Frédéric Chapoton
%T Fractions de Bernoulli-Carlitz et opérateurs $q$-Zeta
%J Journal de théorie des nombres de Bordeaux
%D 2010
%P 575-581
%V 22
%N 3
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.733/
%R 10.5802/jtnb.733
%G fr
%F JTNB_2010__22_3_575_0
Frédéric Chapoton. Fractions de Bernoulli-Carlitz et opérateurs $q$-Zeta. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 575-581. doi : 10.5802/jtnb.733. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.733/

[1] Leonard Carlitz q-Bernoulli numbers and polynomials, Duke Math. J., Volume 15 (1948), pp. 987-1000 | MR | Zbl

[2] Leonard Carlitz q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., Volume 76 (1954), pp. 332-350 | MR | Zbl

[3] Frédéric Chapoton A rooted-trees q-series lifting a one-parameter family of Lie idempotents, Algebra Number Theory, Volume 3 (2009) no. 6, pp. 611-636 | DOI | MR | Zbl

[4] Masanobu Kaneko; Nobushige Kurokawa; Masato Wakayama A variation of Euler’s approach to values of the Riemann zeta function, Kyushu J. Math., Volume 57 (2003) no. 1, pp. 175-192 | MR | Zbl

[5] Taekyun Kim q-Riemann zeta function, Int. J. Math. Math. Sci. (2004) no. 9-12, pp. 599-605 | MR | Zbl

[6] Neal Koblitz On Carlitz’s q-Bernoulli numbers, J. Number Theory, Volume 14 (1982) no. 3, pp. 332-339 | MR | Zbl

[7] Ralf Meyer A spectral interpretation for the zeros of the Riemann zeta function, Mathematisches Institut, Georg-August-Universität Göttingen : Seminars Winter Term 2004/2005, Universitätsdrucke Göttingen, Göttingen, 2005, pp. 117-137 | MR | Zbl

[8] Junya Satoh q-analogue of Riemann’s ζ-function and q-Euler numbers, J. Number Theory, Volume 31 (1989) no. 3, pp. 346-362 | MR | Zbl

[9] Hirofumi Tsumura A note on q-analogues of the Dirichlet series and q-Bernoulli numbers, J. Number Theory, Volume 39 (1991) no. 3, pp. 251-256 | MR | Zbl

Cited by Sources: