

Frédéric CHAPOTON

Fractions de Bernoulli-Carlitz et opérateurs q-Zeta

Tome 22, nº 3 (2010), p. 575-581.

 $\verb|\true| < http://jtnb.cedram.org/item?id=JTNB_2010__22_3_575_0 >$

© Université Bordeaux 1, 2010, tous droits réservés.

L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

http://www.cedram.org/

Fractions de Bernoulli-Carlitz et opérateurs q-Zeta

par Frédéric CHAPOTON

RÉSUMÉ. On introduit une déformation des séries de Dirichlet d'une variable complexe s, sous la forme d'un opérateur pour chaque nombre complexe s, agissant sur les séries formelles sans terme constant en une variable q. On montre que les fractions de Bernoulli-Carlitz sont les images de certains polynômes en q par les opérateurs associés à la fonction ζ de Riemann aux entiers négatifs.

Abstract. Bernoulli-Carlitz fractions and q-Zeta operators

We introduce a deformation of Dirichlet series of one complex variable s, which is given for each complex number s by an operator acting on formal power series without constant term in the variable q. We prove that the Bernoulli-Carlitz fractions are obtained as the image of some simple polynomials in q by the operators corresponding to the Riemann ζ function at negative integers.

1. Opérateurs associés aux séries de Dirichlet

A chaque suite $(a_n)_{n\geq 1}$ de nombres complexes, on associe la série de Dirichlet formelle

(1.1)
$$\zeta(a,s) = \sum_{n \ge 1} \frac{a_n}{n^s},$$

où s est un nombre complexe. Le produit de deux telles séries correspond à la convolution des suites de nombres complexes :

(1.2)
$$\zeta(a,s)\zeta(b,s) = \zeta(a*b,s),$$

où
$$(a*b)_n = \sum_{d|n} a_d b_{n/d}$$
.

Considérons maintenant l'anneau $\mathbb{C}[[q]]$ des séries formelles à coefficients complexes en une variable q. Pour $n \geq 1$, on définit le nombre quantique

$$[n] = \frac{q^n - 1}{q - 1}$$

et l'opérateur de Frobenius formel

$$(1.4) F_n(f)(q) = f(q^n),$$

agissant sur $\mathbb{C}[[q]]$ et par restriction sur le sous espace $q\mathbb{C}[[q]]$ des séries formelles sans terme constant.

A chaque suite $(a_n)_{n\geq 1}$, on peut alors associer l'opérateur

(1.5)
$$\zeta_q(a,s) = \sum_{n>1} \frac{a_n F_n}{[n]^s},$$

qui agit sur $q\mathbb{C}[[q]]$. Cet opérateur est bien défini pour tout nombre complexe s.

Lemme 1.1. Pour tous m, n entiers non nuls, on a la relation

(1.6)
$$\frac{F_m}{[m]^s} \frac{F_n}{[n]^s} = \frac{F_{mn}}{[mn]^s}.$$

En particulier, ces deux opérateurs commutent.

Par conséquent,

Proposition 1.1. L'application $a \mapsto \zeta_q(a,s)$ est un morphisme de l'algèbre des suites de nombres complexes pour la convolution dans l'algèbre des opérateurs linéaires sur $q\mathbb{C}[[q]]$.

En particulier, si la suite a est multiplicative, l'opérateur $\zeta_q(a,s)$ admet un produit eulérien, exactement similaire au produit eulérien de la série de Dirichlet $\zeta(a,s)$.

Par exemple, la fonction ζ de Riemann est la série de Dirichlet associée à la suite constante égale à 1. On a donc un opérateur ζ_q défini par

(1.7)
$$\zeta_q(s) = \sum_{n>1} \frac{F_n}{[n]^s}.$$

Cet opérateur admet le produit eulérien

(1.8)
$$\zeta_q(s) = \prod_{p} \left(1 - \frac{F_p}{[p]^s}\right)^{-1},$$

où le produit porte sur l'ensemble des nombres premiers.

Remarque. Un opérateur Zeta proche de l'opérateur $\zeta_q(0)$ a été introduit dans [7]. Il utilise plutôt la variable τ telle que $q = \exp(2i\pi\tau)$.

2. Fractions de Bernoulli-Carlitz

Introduisons maintenant les fractions de Bernoulli-Carlitz, qui vont jouer le rôle des nombres de Bernoulli. Ces fractions ont été définies par Carlitz [1, 2], puis étudiées par Koblitz et Satoh [6, 8]. Elles sont aussi apparues plus récemment dans [3], avec une motivation algébrique.

On peut les définir par la récurrence suivante : on pose $\beta_0 = 1$ et

(2.1)
$$q(q\beta + 1)^n - \beta_n = \begin{cases} 1 \text{ si } n = 1, \\ 0 \text{ si } n > 1. \end{cases}$$

Dans cette expression, par convention, on pose $\beta^i = \beta_i$ pour tout entier i, après avoir développé la puissance du binôme.

On obtient ainsi une suite de fractions rationnelles β_n dans le corps $\mathbb{Q}(q)$. On peut montrer (voir [1]) que ces fractions n'ont pas de pôle en q = 1 et que la valeur de β_n en q = 1 est le nombre de Bernoulli B_n .

Les premières fractions sont

(2.2)
$$\beta_0 = 1, \quad \beta_1 = -\frac{1}{\Phi_2}, \quad \beta_2 = \frac{q}{\Phi_2 \Phi_3},$$

(2.3)
$$\beta_3 = \frac{q(1-q)}{\Phi_2 \Phi_3 \Phi_4}, \quad \beta_4 = \frac{q(q^4 - q^3 - 2q^2 - q + 1)}{\Phi_2 \Phi_3 \Phi_4 \Phi_5},$$

où les Φ_n sont les polynômes cyclotomiques.

Soit $\mathbb{B}(t)$ la série génératrice des β_n :

(2.4)
$$\mathbb{B}(t) = \sum_{n>0} \beta_n \frac{t^n}{n!}.$$

La récurrence (2.1) se traduit en une équation fonctionnelle pour \mathbb{B} :

(2.5)
$$\mathbb{B}(t) = qe^t \mathbb{B}(qt) + 1 - q - t.$$

On vérifie (en utilisant la relation 1 + q[n] = [n+1]) que la solution de (2.5) est donnée par

(2.6)
$$\mathbb{B}(t) = \sum_{n>0} (1-q)q^n e^{[n]t} - tq^{2n} e^{[n]t}.$$

Par dérivations successives par rapport à t, on obtient la formule explicite

(2.7)
$$\beta_n = \sum_{k \ge 1} q^k [k]^{n-1} - (n+1) \sum_{k \ge 1} q^{2k} [k]^{n-1},$$

valable pour $n \geq 2$.

En utilisant l'opérateur $\zeta_q(1-n)$, on obtient donc le résultat suivant.

Théorème 2.1. Pour $n \geq 2$, on a

(2.8)
$$\beta_n = \zeta_q(1-n) \left(q - (n+1)q^2 \right).$$

L'égalité (2.8) est un q-analogue naturel du résultat d'Euler qui relie les valeurs prises aux entiers négatifs par la fonction ζ de Riemann et les nombres de Bernoulli B_n : pour tout $n \geq 2$, on a

(2.9)
$$B_n = \zeta(1-n)(-n).$$

On peut espérer déduire le résultat classique d'Euler par un passage à la limite q=1 en un sens approprié. Ceci nécessite sans doute un travail analytique non trivial, qui reste à faire.

3. Opérateur q-Zeta de Hurwitz

Comme dans le cas classique, les résultats précédents ont des analogues pour l'opérateur q-Zeta de Hurwitz.

Soit $x \in \mathbb{Q}_{>0}$. On note encore F_{n+x} l'opérateur de Frobenius formel

(3.1)
$$F_{n+x}(f)(q) = f(q^{n+x}),$$

qui agit sur les séries de Puiseux sans terme constant en la variable q. On définit alors l'opérateur Zeta de Hurwitz

(3.2)
$$\zeta_{q}(s,x) = \sum_{n \ge 0} \frac{F_{n+x}}{[n+x]^{s}}.$$

Proposition 3.1. Pour tout $N \geq 1$ et tout s dans \mathbb{C} , on a la relation de distribution

(3.3)
$$\sum_{0 \le j \le N} \frac{F_N}{[N]^s} \zeta_q(s, \frac{x+j}{N}) = \zeta_q(s, x).$$

La preuve est immédiate, en utilisant la définition (3.2) et une version adaptée du Lemme 1.1.

Par ailleurs, on introduit (d'après Carlitz) des q-polynômes de Bernoulli par la formule symbolique

(3.4)
$$\beta_n(x) = (q^x \beta + [x])^n.$$

Ce sont des polynômes en la variable q^x à coefficients dans $\mathbb{Q}(q)$. La série génératrice des q-polynômes de Bernoulli est alors

$$(3.5) e^{[x]t} \mathbb{B}(q^x t).$$

La série génératrice des $\beta_n(x)$ est donc explicitement donnée par

(3.6)
$$e^{[x]t} \sum_{n>0} (1-q)q^n e^{[n]q^x t} - tq^{2n+x} e^{[n]q^x t}.$$

soit encore (par la relation $[x] + q^x[n] = [n+x]$)

(3.7)
$$\sum_{n>0} (1-q)q^n e^{[n+x]t} - tq^{2n+x} e^{[n+x]t}.$$

Par dérivations successives par rapport à t, on obtient la formule explicite

(3.8)
$$q^x \beta_n(x) = \sum_{k \ge 0} q^{k+x} [k+x]^{n-1} - (n+1) \sum_{k \ge 0} q^{2k+2x} [k+x]^{n-1},$$

valable pour n > 0.

En exprimant ceci avec l'opérateur q-Zeta de Hurwitz, on trouve l'égalité suivante.

Proposition 3.2. Pour $n \geq 0$, on a la relation

(3.9)
$$q^{x}\beta_{n}(x) = \zeta_{q}(1-n,x)\left(q-(n+1)q^{2}\right).$$

4. Opérateurs q-L de Dirichlet

Comme dans le cas classique, on peut généraliser les résultats précédents aux opérateurs q-L associés aux caractères de Dirichlet, en utilisant l'opérateur q-Zeta de Hurwitz.

Soit χ un caractère de Dirichlet de conducteur N. On définit un opérateur

(4.1)
$$\mathbf{L}_q(\chi, s) = \sum_{n \ge 1} \frac{\chi(n) F_n}{[n]^s}.$$

On suppose maintenant que χ n'est pas un caractère trivial, pour simplifier.

Proposition 4.1. On a

(4.2)
$$\mathbf{L}_{q}(\chi, s) = \sum_{0 \le j < N} \chi(j) \frac{F_{N}}{[N]^{s}} \boldsymbol{\zeta}_{q}(s, j/N).$$

La preuve est similaire à celle de la relation de distribution.

On introduit alors les analogues des fractions de Bernoulli-Carlitz pour le caractère χ :

(4.3)
$$\beta_{\chi,n} = \sum_{0 \le j \le N} \chi(j) \frac{F_N}{[N]^{1-n}} \left(q^{j/N} \beta_n(j/N) \right).$$

On déduit des propositions 3.2 et 4.1 l'égalité suivante.

Proposition 4.2. Pour $n \geq 0$, on a

(4.4)
$$\beta_{\chi,n} = \mathbf{L}_q(\chi, 1-n) \left(q - (n+1)q^2 \right).$$

5. Calcul des valeurs aux entiers négatifs

Soit χ un caractère de Dirichlet et r un entier strictement positif. Comme χ est périodique, la somme $f_{\chi}(r) = \sum_{n\geq 1} \chi(n)q^{nr}$ est une fraction rationnelle. C'est aussi la valeur $\mathbf{L}_q(\chi,0)q^r$. Par exemple, pour le caractère trivial, on obtient $q^r/(1-q^r)$.

Si f est une fonction de la variable r, on note Δ l'opérateur suivant (qui est une forme de q-différence) :

(5.1)
$$\Delta(f) = \frac{f(r+1) - f(r)}{q-1}.$$

L'opérateur Δ agit sur l'ensemble des fractions en q et q^r qui, en tant que fonction de q pour tout r entier fixé, ont des pôles seulement sur le cercle unité et sont nulles en zéro.

L'opérateur Δ vérifie

$$\Delta(q^{nr}) = [n]q^{nr}.$$

On a donc, pour tout $i \leq 0$ et tout entier $r \geq 1$, la valeur

(5.3)
$$\mathbf{L}_{q}(\chi, i)q^{r} = \Delta^{-i}f_{\chi}.$$

Il en résulte donc que toutes ces valeurs sont des fractions rationnelles en q, nulles en zéro et avec pôles sur le cercle unité.

Proposition 5.1. Soit P un polynôme en q sans terme constant. Si $i \leq 0$, alors $\mathbf{L}_q(\chi, i)P$ est une fraction rationnelle en q.

6. Remarques et spéculations

Parmi les différentes fonctions q-Zeta qui sont apparues dans la littérature [4, 9, 5], certaines sont obtenues par application de l'opérateur q-Zeta à diverses puissances de q. Il paraît plus naturel d'étudier l'opérateur luimême plutôt qu'un choix arbitraire de ses valeurs.

On peut imaginer que les valeurs spéciales des fonctions L correspondent à l'évaluation des opérateurs q-L en des arguments particuliers. Il faudrait écrire la valeur spéciale comme un quotient et trouver des q-analogues du numérateur et du dénominateur.

Vu son produit eulérien, on peut aussi imaginer l'existence d'une équation fonctionnelle pour l'opérateur $\zeta_q(s)$. Il s'agirait de compléter le produit eulérien en introduisant un opérateur $\gamma(s)$ correspondant au facteur archimédien. Cet opérateur devrait commuter avec tous les opérateurs $\frac{F_n}{[n]^s}$, pour que le produit eulérien complété reste totalement commutatif.

On observe numériquement la propriété suivante des fractions de Bernoulli-Carlitz. Leur numérateur a quelques zéros réels positifs, beaucoup de zéros sur le cercle unité et quelque paires de zéros complexes. Ceci semble aussi vrai pour les fractions similaires associées aux caractères de Dirichlet.

Bibliographie

- Leonard Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987–1000.
 MR MR0027288 (10,283g)
- , q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954), 332–350.
 MR MR0060538 (15,686a)
- 3. Frédéric Chapoton, A rooted-trees q-series lifting a one-parameter family of Lie idempotents, Algebra Number Theory 3 (2009), no. 6, 611–636. MR 2579388
- Masanobu Kaneko, Nobushige Kurokawa, and Masato Wakayama, A variation of Euler's approach to values of the Riemann zeta function, Kyushu J. Math. 57 (2003), no. 1, 175–192. MR MR2069738 (2005e:11102)
- 5. Taekyun Kim, q-Riemann zeta function, Int. J. Math. Math. Sci. (2004), no. 9-12, 599–605. MR MR2048800 (2005d :11167)
- Neal Koblitz, On Carlitz's q-Bernoulli numbers, J. Number Theory 14 (1982), no. 3, 332–339.
 MR MR660378 (83k:12017)
- Ralf Meyer, A spectral interpretation for the zeros of the Riemann zeta function, Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005, Universitätsdrucke Göttingen, Göttingen, 2005, pp. 117–137. MR MR2206883 (2006k:11166)
- 8. Junya Satoh, q-analogue of Riemann's ζ -function and q-Euler numbers, J. Number Theory **31** (1989), no. 3, 346–362. MR MR993908 (90d :11132)
- 9. Hirofumi Tsumura, A note on q-analogues of the Dirichlet series and q-Bernoulli numbers, J. Number Theory **39** (1991), no. 3, 251–256. MR MR1133555 (92j:11020)

Frédéric CHAPOTON
Institut Camille Jordan
Université Claude Bernard Lyon 1
Bâtiment Braconnier
21 Avenue Claude Bernard
69622 Villeurbanne Cedex, France
E-mail: chapoton@math.univ-lyon1.fr
URL: http://math.univ-lyon1.fr/~chapoton/