The local Jacquet-Langlands correspondence via Fourier analysis
Journal de Théorie des Nombres de Bordeaux, Tome 22 (2010) no. 2, pp. 483-512.

Soit F un corps local non archimédien et localement compact, et soit B/F un corps de quaternions. La correspondance de Jacquet-Langlands fournit une bijection entre les représentations lisses et irréductibles de B × de dimension >1 et les représentations cuspidales et irréductibles de GL 2 (F). Nous présentons une nouvelle construction de cette bijection pour laquelle la préservation des facteurs epsilon est automatique. Nous construisons une famille de paires (,ρ), ou M 2 (F)×B est un ordre et ρ est une représentation d’une certaine sous-groupe de GL 2 (F)×B × qui contient × . Soit ππ une représentation irréductible de GL 2 (F)×B ×  ; nous prouvons que ππ contient une telle ρ si et seulement si π est cuspidale et correspond à π ˇ sous la correspondence de Jacquet-Langlands. On y voit tous les π et les π . L’égalité des facteurs epsilon est reduite à un calcul Fourier-analytique sur un anneau quotient de .

Let F be a locally compact non-Archimedean field, and let B/F be a division algebra of dimension 4. The Jacquet-Langlands correspondence provides a bijection between smooth irreducible representations π of B × of dimension >1 and irreducible cuspidal representations of GL 2 (F). We present a new construction of this bijection in which the preservation of epsilon factors is automatic. This is done by constructing a family of pairs (,ρ), where M 2 (F)×B is an order and ρ is a finite-dimensional representation of a certain subgroup of GL 2 (F)×B × containing × . Let ππ be an irreducible representation of GL 2 (F)×B × ; we show that ππ contains such a ρ if and only if π is cuspidal and corresponds to π ˇ under Jacquet-Langlands, and also that every π and π arises this way. The agreement of epsilon factors is reduced to a Fourier-analytic calculation on a finite ring quotient of .

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.728
@article{JTNB_2010__22_2_483_0,
     author = {Jared Weinstein},
     title = {The local {Jacquet-Langlands} correspondence via {Fourier} analysis},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {483--512},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {2},
     year = {2010},
     doi = {10.5802/jtnb.728},
     mrnumber = {2769075},
     zbl = {1223.11066},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.728/}
}
TY  - JOUR
AU  - Jared Weinstein
TI  - The local Jacquet-Langlands correspondence via Fourier analysis
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2010
DA  - 2010///
SP  - 483
EP  - 512
VL  - 22
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.728/
UR  - https://www.ams.org/mathscinet-getitem?mr=2769075
UR  - https://zbmath.org/?q=an%3A1223.11066
UR  - https://doi.org/10.5802/jtnb.728
DO  - 10.5802/jtnb.728
LA  - en
ID  - JTNB_2010__22_2_483_0
ER  - 
Jared Weinstein. The local Jacquet-Langlands correspondence via Fourier analysis. Journal de Théorie des Nombres de Bordeaux, Tome 22 (2010) no. 2, pp. 483-512. doi : 10.5802/jtnb.728. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.728/

[Bad02] Alexandru Ioan Badulescu, Correspondance de Jacquet-Langlands pour les corps locaux de caractéristique non nulle. Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 695–747. | Numdam | MR 1951441 | Zbl 1092.11025

[BH00] Colin J. Bushnell and Guy Henniart, Correspondance de Jacquet-Langlands explicite. II. Le cas de degré égal à la caractéristique résiduelle. Manuscripta Math. 102 (2000), no. 2, 211–225. | MR 1771941 | Zbl 1037.22031

[BH05] , Local tame lifting for GL (n). III. Explicit base change and Jacquet-Langlands correspondence. J. Reine Angew. Math. 580 (2005), 39–100. | MR 2130587 | Zbl 1074.11063

[BH06] C. Bushnell and G. Henniart, The local langlands conjecture for GL(2). Springer-Verlag, 2006. | MR 2234120 | Zbl 1100.11041

[BK93] Colin J. Bushnell and Philip C. Kutzko, The admissible dual of GL (N) via compact open subgroups. Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. | MR 1204652 | Zbl 0787.22016

[BW04] I. Bouw and S. Wewers, Stable reduction of modular curves. Modular Curves and abelian varieties, Birkhauser, 2004. | MR 2058639 | Zbl 1147.11316

[Car86] H. Carayol, Sur les représentations -adiques associées aux formes modulaires de Hilbert. Annales scientifiques de l’É.N.S. 19 (1986), no. 3, 409–468. | Numdam | MR 870690 | Zbl 0616.10025

[DKV84] P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres centrales simples p-adiques. Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 33–117. | MR 771672 | Zbl 0583.22009

[GH07] S. Gurevich and R. Hadani, The geometric Weil representation. Selecta Mathematica 13 (2007), no. 3, 465–481. | MR 2383602 | Zbl 1163.22004

[GH08] S. Gurevich and R. Hadani., On the diagonalization of the discrete Fourier transform. Applied and Computational Harmonic Analysis (2008). | MR 2526889 | Zbl 1165.65089

[GJ72] Roger Godement and Hervé Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin, 1972. | MR 342495 | Zbl 0244.12011

[GL85] Paul Gérardin and Wen-Ch’ing Winnie Li, Fourier transforms of representations of quaternions. J. Reine Angew. Math. 359 (1985), 121–173. | MR 794802 | Zbl 0553.12008

[Gér77] Paul Gérardin, Weil representations associated to finite fields. J. Algebra 46 (1977), no. 1, 54–101. | MR 460477 | Zbl 0359.20008

[Gér79] , Cuspidal unramified series for central simple algebras over local fields. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 157–169. | MR 546594 | Zbl 0416.22019

[Hen93a] Guy Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ϵ de paires. Invent. Math. 113 (1993), no. 2, 339–350. | MR 1228128 | Zbl 0810.11069

[Hen93b] , Correspondance de Jacquet-Langlands explicite. I. Le cas modéré de degré premier. Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 85–114. | MR 1263525 | Zbl 0961.11018

[How77] Roger E. Howe, Tamely ramified supercuspidal representations of Gl n . Pacific J. Math. 73 (1977), no. 2, 437–460. | MR 492087 | Zbl 0404.22019

[JL70] Hervé Jacquet and Robert Langlands, Automorphic forms on GL (2). Lecture Notes in Mathematics, vol. 114, Springer-Verlag, Berlin-New York, 1970. | MR 401654 | Zbl 0236.12010

[Kon63] Takeshi Kondo, On Gaussian sums attached to the general linear groups over finite fields. J. Math. Soc. Japan 15 (1963), 244–255. | MR 161914 | Zbl 0135.08901

[Lus78] George Lusztig, Representations of finite Chevalley groups. CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978, Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. | MR 518617 | Zbl 0418.20037

[Mac73] I.G. Macdonald, Symmetric functions and Hall polynomials. Oxford University Press, 1973. | MR 1354144 | Zbl 0899.05068

[Rog83] Jonathan D. Rogawski, Representations of GL (n) and division algebras over a p-adic field. Duke Math. J. 50 (1983), no. 1, 161–196. | MR 700135 | Zbl 0523.22015

[Sno09] Andrew Snowden, The Jacquet-Langlands correspondence for GL(2). Ph. D. Thesis, 2009. | MR 2713369

[Yos09] Teruyoshi Yoshida, On non-abelian Lubin-Tate theory via vanishing cycles. Adv. Stud. Pure Math. 58 (2010), 361–402. | MR 2676163

Cité par Sources :