The local Jacquet-Langlands correspondence via Fourier analysis
Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 483-512.

Let F be a locally compact non-Archimedean field, and let B/F be a division algebra of dimension 4. The Jacquet-Langlands correspondence provides a bijection between smooth irreducible representations π of B × of dimension >1 and irreducible cuspidal representations of GL 2 (F). We present a new construction of this bijection in which the preservation of epsilon factors is automatic. This is done by constructing a family of pairs (,ρ), where M 2 (F)×B is an order and ρ is a finite-dimensional representation of a certain subgroup of GL 2 (F)×B × containing × . Let ππ be an irreducible representation of GL 2 (F)×B × ; we show that ππ contains such a ρ if and only if π is cuspidal and corresponds to π ˇ under Jacquet-Langlands, and also that every π and π arises this way. The agreement of epsilon factors is reduced to a Fourier-analytic calculation on a finite ring quotient of .

Soit F un corps local non archimédien et localement compact, et soit B/F un corps de quaternions. La correspondance de Jacquet-Langlands fournit une bijection entre les représentations lisses et irréductibles de B × de dimension >1 et les représentations cuspidales et irréductibles de GL 2 (F). Nous présentons une nouvelle construction de cette bijection pour laquelle la préservation des facteurs epsilon est automatique. Nous construisons une famille de paires (,ρ), ou M 2 (F)×B est un ordre et ρ est une représentation d’une certaine sous-groupe de GL 2 (F)×B × qui contient × . Soit ππ une représentation irréductible de GL 2 (F)×B ×  ; nous prouvons que ππ contient une telle ρ si et seulement si π est cuspidale et correspond à π ˇ sous la correspondence de Jacquet-Langlands. On y voit tous les π et les π . L’égalité des facteurs epsilon est reduite à un calcul Fourier-analytique sur un anneau quotient de .

DOI: 10.5802/jtnb.728
Jared Weinstein 1

1 UCLA Mathematics Department Box 951555 Los Angeles, CA 90095-1555, USA
@article{JTNB_2010__22_2_483_0,
     author = {Jared Weinstein},
     title = {The local {Jacquet-Langlands} correspondence via {Fourier} analysis},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {483--512},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {2},
     year = {2010},
     doi = {10.5802/jtnb.728},
     mrnumber = {2769075},
     zbl = {1223.11066},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.728/}
}
TY  - JOUR
AU  - Jared Weinstein
TI  - The local Jacquet-Langlands correspondence via Fourier analysis
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2010
SP  - 483
EP  - 512
VL  - 22
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.728/
DO  - 10.5802/jtnb.728
LA  - en
ID  - JTNB_2010__22_2_483_0
ER  - 
%0 Journal Article
%A Jared Weinstein
%T The local Jacquet-Langlands correspondence via Fourier analysis
%J Journal de théorie des nombres de Bordeaux
%D 2010
%P 483-512
%V 22
%N 2
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.728/
%R 10.5802/jtnb.728
%G en
%F JTNB_2010__22_2_483_0
Jared Weinstein. The local Jacquet-Langlands correspondence via Fourier analysis. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 483-512. doi : 10.5802/jtnb.728. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.728/

[Bad02] Alexandru Ioan Badulescu, Correspondance de Jacquet-Langlands pour les corps locaux de caractéristique non nulle. Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 695–747. | Numdam | MR | Zbl

[BH00] Colin J. Bushnell and Guy Henniart, Correspondance de Jacquet-Langlands explicite. II. Le cas de degré égal à la caractéristique résiduelle. Manuscripta Math. 102 (2000), no. 2, 211–225. | MR | Zbl

[BH05] , Local tame lifting for GL (n). III. Explicit base change and Jacquet-Langlands correspondence. J. Reine Angew. Math. 580 (2005), 39–100. | MR | Zbl

[BH06] C. Bushnell and G. Henniart, The local langlands conjecture for GL(2). Springer-Verlag, 2006. | MR | Zbl

[BK93] Colin J. Bushnell and Philip C. Kutzko, The admissible dual of GL (N) via compact open subgroups. Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. | MR | Zbl

[BW04] I. Bouw and S. Wewers, Stable reduction of modular curves. Modular Curves and abelian varieties, Birkhauser, 2004. | MR | Zbl

[Car86] H. Carayol, Sur les représentations -adiques associées aux formes modulaires de Hilbert. Annales scientifiques de l’É.N.S. 19 (1986), no. 3, 409–468. | Numdam | MR | Zbl

[DKV84] P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres centrales simples p-adiques. Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 33–117. | MR | Zbl

[Gér77] Paul Gérardin, Weil representations associated to finite fields. J. Algebra 46 (1977), no. 1, 54–101. | MR | Zbl

[Gér79] , Cuspidal unramified series for central simple algebras over local fields. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 157–169. | MR | Zbl

[GH07] S. Gurevich and R. Hadani, The geometric Weil representation. Selecta Mathematica 13 (2007), no. 3, 465–481. | MR | Zbl

[GH08] S. Gurevich and R. Hadani., On the diagonalization of the discrete Fourier transform. Applied and Computational Harmonic Analysis (2008). | MR | Zbl

[GJ72] Roger Godement and Hervé Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin, 1972. | MR | Zbl

[GL85] Paul Gérardin and Wen-Ch’ing Winnie Li, Fourier transforms of representations of quaternions. J. Reine Angew. Math. 359 (1985), 121–173. | MR | Zbl

[Hen93a] Guy Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ϵ de paires. Invent. Math. 113 (1993), no. 2, 339–350. | MR | Zbl

[Hen93b] , Correspondance de Jacquet-Langlands explicite. I. Le cas modéré de degré premier. Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 85–114. | MR | Zbl

[How77] Roger E. Howe, Tamely ramified supercuspidal representations of Gl n . Pacific J. Math. 73 (1977), no. 2, 437–460. | MR | Zbl

[JL70] Hervé Jacquet and Robert Langlands, Automorphic forms on GL (2). Lecture Notes in Mathematics, vol. 114, Springer-Verlag, Berlin-New York, 1970. | MR | Zbl

[Kon63] Takeshi Kondo, On Gaussian sums attached to the general linear groups over finite fields. J. Math. Soc. Japan 15 (1963), 244–255. | MR | Zbl

[Lus78] George Lusztig, Representations of finite Chevalley groups. CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978, Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. | MR | Zbl

[Mac73] I.G. Macdonald, Symmetric functions and Hall polynomials. Oxford University Press, 1973. | MR | Zbl

[Rog83] Jonathan D. Rogawski, Representations of GL (n) and division algebras over a p-adic field. Duke Math. J. 50 (1983), no. 1, 161–196. | MR | Zbl

[Sno09] Andrew Snowden, The Jacquet-Langlands correspondence for GL(2). Ph. D. Thesis, 2009. | MR

[Yos09] Teruyoshi Yoshida, On non-abelian Lubin-Tate theory via vanishing cycles. Adv. Stud. Pure Math. 58 (2010), 361–402. | MR

Cited by Sources: