The circle method and pairs of quadratic forms
Journal de Théorie des Nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 403-419.

We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.

Nous donnons une majoration non triviale du nombre de solutions entières, de taille donnée, d’un système de deux formes quadratiques en cinq variables.

Received:
Published online:
DOI: 10.5802/jtnb.724
Classification: 11D45,  11P55
Henryk Iwaniec 1; Ritabrata Munshi 2

1 Rutgers University 110, Frelinghuysen Road Piscataway NJ 08854, USA
2 School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Mumbai 400005, India
@article{JTNB_2010__22_2_403_0,
     author = {Henryk Iwaniec and Ritabrata Munshi},
     title = {The circle method and pairs of quadratic forms},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {403--419},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {2},
     year = {2010},
     doi = {10.5802/jtnb.724},
     mrnumber = {2769071},
     zbl = {1223.11037},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.724/}
}
TY  - JOUR
TI  - The circle method and pairs of quadratic forms
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2010
DA  - 2010///
SP  - 403
EP  - 419
VL  - 22
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.724/
UR  - https://www.ams.org/mathscinet-getitem?mr=2769071
UR  - https://zbmath.org/?q=an%3A1223.11037
UR  - https://doi.org/10.5802/jtnb.724
DO  - 10.5802/jtnb.724
LA  - en
ID  - JTNB_2010__22_2_403_0
ER  - 
%0 Journal Article
%T The circle method and pairs of quadratic forms
%J Journal de Théorie des Nombres de Bordeaux
%D 2010
%P 403-419
%V 22
%N 2
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.724
%R 10.5802/jtnb.724
%G en
%F JTNB_2010__22_2_403_0
Henryk Iwaniec; Ritabrata Munshi. The circle method and pairs of quadratic forms. Journal de Théorie des Nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 403-419. doi : 10.5802/jtnb.724. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.724/

[1] R. de la Bretèche; T.D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree 4. I. Michigan Math. J. 55 (2007), no. 1, 51–80. | Zbl: 1132.14019

[2] T.D. Browning, An overview of Manin’s conjecture for del Pezzo surfaces. Analytic Number Theory - A Tribute to Gauss and Dirichlet (Goettingen, 20th June - 24th June, 2005), Clay Mathematics Proceedings 7 (2007), 39–56. | Zbl: 1134.14017

[3] W. Duke; J.B. Friedlander; H. Iwaniec, Bounds for automorphic L-functions. Invent. Math. 112 (1993), no. 1, 1–8. | Zbl: 0765.11038

[4] D.R. Heath-Brown, A new form of the circle method, and its application to quadratic forms. J. Reine Angew. Math. 481 (1996), 149–206. | Zbl: 0857.11049

Cited by Sources: