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The circle method and pairs of quadratic forms

par Henryk IWANIEC et Ritabrata MUNSHI

Résumé. Nous donnons une majoration non triviale du nombre
de solutions entières, de taille donnée, d’un système de deux formes
quadratiques en cinq variables.

Abstract. We give non-trivial upper bounds for the number of
integral solutions, of given size, of a system of two quadratic form
equations in five variables.

1. Introduction
The purpose of the paper is to obtain a non-trivial upper bound for the

number of integer solutions of height B of the system of quadratic equations

ψ1(x1, . . . , x5) = 0, ψ2(x1, . . . , x5) = 0.(1.1)

Here ψ1 and ψ2 are quadratic forms over Z with five variables, such that
the above pair of equations define a quartic del Pezzo surface. Accordingly
we define the counting function

(1.2) N∗(B) = #{x ∈ Z5 : ψ1(x) = ψ2(x) = 0, |xi| ≤ B}.

It seems that one can easily obtain the upper bound N∗(B)� B2+ε. This
we will refer to as the trivial bound. If the surface V ⊂ P4 defined by the
equations (1.1) contains a line defined over Q, then one cannot hope to get a
better upper bound. Indeed any of the Q-lines will contain B2 many points
of height B. In such cases it is logical to modify the counting function (1.2)
so that only those points which lie outside the lines are taken into account.

To make this precise, let U be the open subset of V obtained by deleting
the lines. (Note that there are at most 16 lines on V .) Then we define the
counting function

(1.3) N(B) = #{x ∈ Z5 : x primitive, x ∈ U(Q), |xi| ≤ B},

where by x primitive we mean that the gcd (x1, . . . , x5) = 1 and the first
non-zero coordinate is positive. We have the following conjecture.
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Conjecture.
(1.4) N(B) ∼ cB(logB)t−1,

where c and t are certain constants which depend only on ψ1 and ψ2.

This conjecture is a special case of a more general conjecture formulated
by Batyrev, Franke, Manin, Tschinkel and others for Fano varieties. Here we
are dealing with the case of del Pezzo surfaces (Fano varieties of dimension
2) of degree 4. More details about this conjecture can be found in [2].

Some progress has been made towards Conjecture 1 when the surface
V contains isolated singularities (e.g. see [1]). However the conjecture is
far from being proved for any non-singular del Pezzo surface of degree 4.
The best known result in the smooth case is due to Salberger, who proves
the upper bound N(B) � B1+ε, in the special case where the surface V
contains a conic defined over Q. (The details of this result have not appeared
in prints.) Manin and Tschinkel have proved that N(B)� B5/4+ε when all
the 16 lines on the surface are Q-rational.

In general it is difficult to obtain any non-trivial bound for N(B). Our
aim in this paper is to use circle method (combined with the square detector
of Heath-Brown) to establish a bound of the form

N(B)� B2−δ,(1.5)
with some absolute constant δ > 0. For the sake of simplicity we will only
focus on diagonal forms. In this case we can reduce the problem to a slightly
different counting problem. To this end let

φ1(x1, . . . , x4) = a1x
2
1 + · · ·+ a4x

2
4,

φ2(x1, . . . , x4) = b1x
2
1 + · · ·+ b4x

2
4,

and consider the counting function
M(B) = #{x ∈ Z4 : φ1(x) = 0, φ2(x) = 2, |xi| � B},(1.6)

which counts the number of vectors x ∈ Z4 of size B, such that φ1(x) =
0 and φ2(x) is a non-zero square. For convenience we assume that the
discriminant α = a1a2a3a4 is not a square, and that all the 2× 2 minors of
the matrix (

a1 a2 a3 a4
b1 b2 b3 b4

)
are non-zero. Let M denote the product of all the 2 × 2 minors. Now we
state our main result.

Theorem 1.1. Suppose the quadratic forms φ1 and φ2 are such that α is
not a square and M 6= 0. Then we have

M(B)� B9/5+ε,(1.7)
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where the implied constant depends on the quadratic forms φi and on ε.

Suppose the forms ψi in (1.1) are compatible in the sense that there is
an unimodular transformation that reduces the system (1.1) to that of the
form considered in the above theorem. Then it follows that N(B)�M(B).
So as a corollary of Theorem 1.1 we obtain the following:

Corollary 1.1. Suppose the forms ψ1, ψ2 in (1.1) are compatible in the
above sense. Then we have

N(B)� B9/5+ε,(1.8)

where the implied constant depends on the quadratic forms ψi and on ε.

Remark. Our method will yield non-trivial upper bound for the general
quadratic forms ψi, provided they share a common eigenvector.

2. A square detector
We construct a device to detect the condition n = 2, i.e. n is a non-zero

square. To this end let

θ(n) =
{

1 if n = 2,
0 otherwise.

(2.1)

We will use the following construction of Heath-Brown which he calls a
‘square-sieve’. Let P be a set of P primes of size P logP . Then for integers
n with |n| < exp(P ), we have

θ(n)� 1
P 2

∣∣∣∑
p∈P

χp(n)
∣∣∣2,(2.2)

where χp is the quadratic residue character modulo p.
Let W : R4 → R be a non-negative smooth function supported on

[−1, 1]4. Consider

M∗(B) =
∑

x∈Z4

φ1(x)=0

W (B−1x)θ(φ2(x)).(2.3)

This is a smooth version of the counting function (1.6). Clearly to prove
Theorem 1.1, it is enough to show that

M∗(B)� B9/5+ε.(2.4)
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Using (2.2) we get that

M∗(B)�
∑

x∈Z4

φ1(x)=0

W (B−1x) 1
P 2 |
∑
p∈P

χp(φ2(x))|2

� 1
P 2

∑
p1,p2∈P

∑
x∈Z4

φ1(x)=0

W (B−1x)χp1p2(φ2(x)).

To compute the contribution of the diagonal terms (p1 = p2) we need an
upper bound for the number of integer solutions of φ1(x) = 0 of height B.
Precise asymptotic for this counting function can be obtained using circle
method, however for our purpose the following crude bound, which can be
established quite easily, suffices∑

x∈Z4

φ1(x)=0

W (B−1x)� B2+ε.(2.5)

So it follows that

M∗(B)� B2+ε

P
+ 1
P 2

∑
p1 6=p2∈P

Tp1p2(B),(2.6)

where

Tq(B) =
∑

x∈Z4

φ1(x)=0

W (B−1x)χq(φ2(x)).(2.7)

A trivial upper bound of Tq(B) is given by (2.5). But we seek to utilize the
cancellation coming from the sign change of χq(φ2(x)) to get a non-trivial
bound. This is an interesting problem on its own right and we will devote
the rest of the article in establishing the following proposition.

Proposition 2.1. For square-free q, we have

Tq(B)� (q−1B2 +B3/2 + q2B)(qB)ε(2.8)

where the implied constant depends on the forms φi and ε.

Assuming this result we can complete the proof of our main theorem.
Indeed replacing Tp1p2(B) in (2.6) by the upper bound we get

M∗(B)�
{B2

P
+B3/2 + P 4B

}
(PB)ε.

Then by choosing P = B1/5 we get (2.4) and hence the main theorem.
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3. The δ-symbol
We will prove Proposition 2.1 using a version of circle method intro-

duced in [3]. The starting point is a smooth approximation of the following
arithmetic function - the δ-symbol:

δ(n) =
{

1 if n = 0,
0 otherwise.

(3.1)

Let w(t) be an even function on R with w(0) = 0 and compactly supported
and such that

∞∑
k=1

w(k) = 1.

Put
δk(n) = w(k)− w(n/k).

Then we have
δ(n) =

∑
k|n

δk(n).

Using exponential sum to pick the condition k|n, we get

δ(n) =
∑
k

k−1 ∑
h(mod k)

ek(hn)δk(n).

Here we have introduced the notation ec(a) for exp(2πia/c). Putting

∆c(n) =
∑
r

r−1δcr(n)

and r = (h, k), a = h/r, c = k/r we get the following expression for the
δ-symbol.

Lemma 3.1.
δ(n) =

∑
c

c−1 ∑∗

a(mod c)
ec(an)∆c(n).(3.2)

In practice, to detect the equation n = 0 for a sequence of integers
in the range |n| < N/2, we apply the above identity with a smooth test
function w(t) supported on K/2 < |t| < K, with derivatives satisfying
w(j)(t) � K−j−1. It is logical to choose K = N1/2. Then δk(n) vanishes
unless 1 ≤ k < K, and accordingly ∆c(n) vanishes unless 1 ≤ c < K. Also
it follows that ∆c(n)� K−1.

Heath-Brown [4] has successfully employed this version of the circle
method to get asymptotic formula for T1(B). Of course the new feature
in the sum Tq(B) that we consider is the twist χq(φ2(x)), which is forced
by the diophantine problem we are investigating. Naturally the basic parts
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of our analysis come very close to that in [4]. Our next lemma gives an
expression for Tq(B) which is free of the condition φ1(x) = 0.

Lemma 3.2. We have

Tq(B) =
∑

u∈Z4

∞∑
c=1

c−1

[q, c]4
Sq,c(u)Iq,c(u),(3.3)

where
Sq,c(u) =

∑∗

a(mod c)

∑
k(mod [q,c])

χq(φ2(k))ec(aφ1(k))e[q,c](u.k)(3.4)

and

Iq,c(u) =
∫

R4
W (B−1(y))∆c(φ1(y))e[q,c](−u.y)dy.(3.5)

Proof. We use Lemma 3.1 to pick the condition φ1(x) = 0 in the definition
of Tq(B), and get

Tq(B) =
∑
c

c−1 ∑∗

a(mod c)

∑
x∈Z4

W (B−1x)χq(φ2(x))ec(aφ1(x))∆c(φ1(x)).
(3.6)

Splitting the sum over x into respective residue classes modulo the least
common multiple [q, c], we get that the inner sum is given by∑

k(mod [q,c])
χq(φ2(k))ec(aφ1(k))

∑
v∈Z4

f(v),

where f(v) = W (B−1(k + [q, c]v))∆c(φ1(k + [q, c]v)). By Poisson summa-
tion formula we have ∑

v∈Z4

f(v) =
∑

u∈Z4

f̂(u),

where

f̂(u) =
∫

R4
f(y)e(−u.y)dy

=
e[q,c](u.k)

[q, c]4
∫

R4
W (B−1(y))∆c(φ1(y))e[q,c](−u.y)dy.

Substituing this in (3.6) and rearranging the sums over c, a and u, the
lemma follows. �

4. The mixed character sum Sq,c(u)

We begin this section by proving a general multiplicativity property of
the mixed character sum

Sq,c(u) =
∑∗

a(mod c)

∑
k(mod [q,c])

χq(φ2(k))ec(aφ1(k))e[q,c](u.k).
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Lemma 4.1. For q = q1q2, c = c1c2 with (q1c1, q2c2) = 1, we have

Sq,c(u) = Sq1,c1(u)Sq2,c2(u).

Proof. Since (q1c1, q2c2) = 1 we have [q, c] = [q1, c1][q2, c2]. For convenience
let li = [qi, ci]. Set

k = ml1 l̄1 + nl2 l̄2, and a = a′l1 l̄1 + a′′l2 l̄2,

where m, a′ run modulo l2, and n, a′′ run modulo l1. Also l1 l̄1 ≡ 1(mod l2)
and l2 l̄2 ≡ 1(mod l1). Then we get

χq(φ2(k)) = χq1(φ2(n))χq2(φ2(m)),
ec(aφ1(k)) = ec1(a′′l∗2φ1(n))ec2(a′l∗1φ1(m)), and
e[q,c](u.k) = el1(l̄2u.n)el2(l̄1u.m),

where l∗i = l̄i(li/ci). Then substitute l1m and l2n in place of m and n
respectively. Accordingly, substitute a′ and a′′ in place of a′l∗1l21 and a′′l∗2l

2
2

respectively. Then by rearranging the sum the lemma follows. �

Next we evaluate Sq,1(u) for prime modulus. This will be sufficient for our
purpose, as the modulus q comes from the off-diagonal terms of the square-
sieve and hence it will be a product of two distinct primes q = p1p2. First
we note the following basic result about quadratic character sum which will
be used several times in this section.

To this end let φ(x) =
∑n
i=1 aix

2
i be an n-ary diagonal quadratic form.

Let α =
∏
ai, and define the associated quadratic form

φ̃(x) =
n∑
i=1

αx2
i

ai
.(4.1)

Also for any odd prime p, let ε(p) = 1 if p ≡ 1(mod 4), and ε(p) = i if
p ≡ 3(mod 4).

Lemma 4.2. Let p be a prime with p - 2
∏
ai. Then we have

∑
k(mod pr)

epr(φ(k) + u.k) =
{
pnr/2epr(−4αφ̃(u)) if r is even;
pnr/2χp(α)ε(p)nepr(−4αφ̃(u)) if r is odd.

Proof. Let S denote the sum appearing on the left-hand side of the formula.
Then

S =
n∏
i=1

{ ∑
k(mod pr)

epr(aik2 + uik)
}
.
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Since p - 2ai, we can evaluate the quadratic sum within the braces by
completing the square. This yields∑

k(mod pr)
epr(aik2 + uik) = epr(−4aiu2

i )
∑

k(mod pr)
epr(aik2).

The last sum is the well known quadratic Gauss sum, which is given by∑
k(mod pr)

epr(aik2) =
{
pr/2 if r is even;
χp(ai)ε(p)pr/2 if r is odd.

Substituting this in the above expression of S, the lemma follows. �

We will apply the above lemma to evaluate Sp,1. Recall that φ2(x) =
b1x

2
1 + · · · + b4x

2
4. Let β = b1b2b3b4 be the determinant of the associated

matrix.

Lemma 4.3. For any prime p - 2β, we have
Sp,1(u) = χp(−φ̃2(u))p2.

Proof. Let τ(p) denote the Gauss sum associated with the quadratic residue
character χp. Then we have the inversion formula

χp(x) = 1
τ(p)

∑∗

m(mod p)
χp(m)ep(mx).

Using this formula we get

Sp,1(u) = 1
τ(p)

∑∗

m(mod p)
χp(m)

∑
k(mod p)

ep(mφ2(k) + u.k).

The inner sum can be evaluated using Lemma 4.2, and it follows that

Sp,1(u) = p2

τ(p)
∑∗

m(mod p)
χp(mβ)ep(−4mβφ̃2(u))

If p|φ̃2(u) then we get Sp,1(u) = 0. Otherwise changing m to −4βmφ̃2(u),
we get

Sp,1(u) = χp(−φ̃2(u)) p2

τ(p)
∑∗

m(mod p)
χp(m)ep(m)

= χp(−φ̃2(u))p2.

�

The exponential sum S1,c(u) is intrinsically related to the problem of
evaluating asymptotically the number of solutions of the equation φ1(x) = 0
via the circle method. As such this sum has been studied in the literature,
for example [4]. However, for our purpose we need a high level of uniformity,
and for this we will need finer information about this sum. We begin by
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linking S1,c(u) with the well known Ramanujan sum (rather than with the
Kloosterman sum), which is defined as follows:

hm(n) =
∑

k(mod m)
(k,m)=1

em(kn).

Recall that φ1(x) = a1x
2
1 + · · · + a4x

2
4. Let α = a1a2a3a4, which we again

assume to be non-zero, and as before we define the associated form φ̃1(x).

Lemma 4.4. For any prime p - 2α, we have

S1,pr(u) = χp(α)rhpr(φ̃1(u))p2r.

Proof. We apply Lemma 4.2 to get

S1,pr(u) =
∑∗

a(mod pr)

∑
k(mod pr)

epr(aφ1(k) + u.k)

= p2rχp(α)r
∑∗

a(mod pr)
epr(−4aαφ̃1(u)).

In the last sum we substitute k in place of −4aα, and the result follows. �

From the above lemma and using the standard properties of the Ra-
manujan sum we deduce the following corollaries.

Corollary 4.1. For any prime p - 2α, we have

S1,p(u) =
{
χp(α)p2(p− 1) if p|φ̃1(u);
−χp(α)p2 if p - φ̃1(u).

Using the multiplicativity of S1,c(u) and the well known bound for the
Ramanujan sum, we get the following upper bound.

Corollary 4.2. We have

S1,c(u)� c2(c, φ̃1(u)),

where the implied constant depends only on the form φ1.

Remark. In the above bound the factor c2 is achieved due to explicit
evaluation of the complete character sums in this section. A weaker factor,
say c3, which may be obtained using much simpler estimates is not sufficient
for our purpose.

Finally we turn our attention on the mixed character sum Sp,pr(u) for a
prime p. The following lemma records a sharp upper bound for this sum.
To state the result in a neat form, we define the quadratic form φ3(x) =∑
i a

2
i bix

2
i . (Recall that ai’s are the coefficients of φ1 and bi’s are those of

φ2.)
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Lemma 4.5. For any prime p - 2α, and r > 1, we have

Sp,pr(u) = χp(α)rχp(φ3(u))p2rhpr(φ̃1(u)).

Proof. Using the inversion formula, we get

Sp,pr(u) =
∑∗

a(pr)

∑
k(mod pr)

χp(φ2(k))epr(aφ1(k) + u.k)

= 1
τ(p)

∑
n(p)

∑∗

a(pr)
χp(n)

∑
k(mod pr)

epr(ψn(k) + u.k),

where ψn(k) = aφ1(k) + npr−1φ2(k). Let us write, temporarily, ci = aai +
nbip

r−1 the coefficients of the diagonal form ψn. Now since p - 2α, and
r > 1 it follows that p - ci. Then writing aai for the multiplicative inverse
of aai modulo pr, we observe that

(aai + nbip
r−1)(aai − (aai)2nbip

r−1) ≡ 1(mod pr),

and it follows from Lemma 4.2 that

∑
k(mod pr)

epr(ψn(k) + u.k) = χp(α)rp2repr(−4aαφ̃1(u))ep(4̄n
4∑
i=1

(aai)2biu
2
i ).

Substituting this in the above expression of Sp,pr , we get

Sp,pr(u) = p2rχp(α)r

τ(p)
∑
n(p)

∑∗

a(pr)
χp(n)epr(−4aαφ̃1(u))ep(4̄n

4∑
i=1

(aai)2biu
2
i )

= p2rχp(α)r

τ(p)
hpr(φ̃1(u))

∑
n(p)

χp(n)ep(n
4∑
i=1

ai
2biu

2
i ).

The result follows. �

For the sum Sp,p we will be satisfied with the following upper bound.
We also impose, for the sake of simplicity, the condition that all the 2× 2
minors of the matrix (

a1 a2 a3 a4
b1 b2 b3 b4

)
are non-zero. LetM denote the product of all these minors.

Lemma 4.6. Suppose that the quadratic forms φ1 and φ2 satisfy the above
condition. Then for any prime p - 2αβM, we have

Sp,p(u)� p5/2.
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Proof. The inversion formula gives

Sp,p(u) =
∑∗

a(p)

∑
k(mod p)

χp(φ2(k))ep(aφ1(k) + u.k)

= 1
τ(p)

∑
n(p)

∑∗

a(p)
χp(na)

∑
k(mod p)

ep(aψn(k) + u.k),

where ψn(k) = φ1(k) + nφ2(k). Let ci = (ai + nbi) be the coefficients of
the diagonal form ψn, and let γ = c1c2c3c4. For n such that p - (ai + nbi),
it follows from Lemma 4.2 that∑

k(mod p)
ep(aψn(k) + u.k) = χp(γ)p2ep(−4aγψ̃n(u)).

On the other hand if n is such that p|(ai+nbi), then the above sum vanishes
unless p|ui. In this case we observe that our hypothesis implies that p - γ/ci.
So we can apply Lemma 4.2 to evaluate the above sum, and then executing
the sum over a, we get that each n ≡ −aib̄i(mod p) contributes at most
p5/2 to Sp,p. Hence we get

Sp,p = p2

τ(p)
∑
n(p)

n6=−aib̄i(p)

∑∗

a(p)
χp(naγ)ep(−4aγψ̃n(u)) +O(p5/2)

= p2 ∑
n(p)

n6=−aib̄i(p)

χp(−nψ̃n(u)) +O(p5/2).

The result follows by applying the Weil bound. �

The following upper bound is a consequence of Lemmas 4.5, 4.6, and the
Corollary 4.2.

Corollary 4.3. For any prime p - 2αβM we have

Sp,pr(u)� p5r/2(pr, φ̃1(u)).

Also for q|c we have Sq,c � c3.

5. Cancellation in the sum of Sq,c(u)

To prove Proposition 2.1 we have to estimate
∞∑
c=1

c−1

[q, c]4
Sq,c(u)Iq,c(u).

The estimates that we have obtained in the previous section for the indi-
vidual terms Sq,c(u) will be sufficient for our purpose, save the case when
φ̃1(u) vanishes. In this particular situation we have to take advantage of the
cancellation coming from the sum over the modulus c, à la Kloosterman.
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We begin this section with the bound which does not exploit the cancel-
lation in the c-sum.

Lemma 5.1. Let (q, 2αβM) = 1. Then for any u ∈ Z4 with φ̃1(u) 6= 0,
we have ∑

c≤X
q|c

|Sq,c(u)| � q−1/2X3|φ̃1(u)|ε,(5.1)

where the implied constant depends only on the forms φi and on ε.

Proof. As q|c using Corollaries 4.2 and 4.3, we get

|Sq,c(u)| � q−1/2c2(c, qφ̃1(u)).
Hence ∑

c≤X
q|c

|Sq,c(u)| �
∑
c≤X
q|c

q−1/2c2(c, qφ̃1(u))

� q−1/2 ∑
d|qφ̃1(u)

d3 ∑
c≤X/d

c2.

Executing the sums and applying the trivial bound for the number of divi-
sors of φ̃1(u), the lemma follows. �

In case φ̃1(u) = 0, using Corollary 4.2, we get∑
c≤X
|S1,c(u)| � X4,

which is too weak to yield anything useful. Our next lemma gives a non-
trivial averaging over the modulus c.

Lemma 5.2. Suppose q = q1q2 is square-free, (q, 2αβM) = 1 and α =
a1a2a3a4 is not a square. Then for u ∈ Z4 with φ̃1(u) = 0, we have∑

c≤X
(c,q)=q1

Sq1,c(u)� q−1
1 X7/2(Bq)ε,(5.2)

where the implied constant depends only on the forms φi, and on ε.

Proof. The multiplicativity of the mixed exponential sum gives the follow-
ing decomposition of the generating Dirichlet series∑

(c,q)=q1

Sq1,c(u)c−s =
∏
p|q1

{
Sp,p(u)p−s + . . .

}
Lq(s; u),

where
Lq(s; u) =

∑
(c,q)=1

S1,c(u)c−s =
∏
p-q

{∑
n

S1,pn(u)p−ns
}
.
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It follows from Lemma 4.2 that Lq(s; u) converges absolutely for σ = <(s) >
4, and from Lemmas 4.5, 4.6 it follows that the product over p|q1 is analytic
for σ > 7/2 and is bounded by O(1/q1). Now for p - 2α, we can use Lemmas
4.2 and 4.4 to get∑

n

S1,pn(u)p−ns = 1 + p2(p− 1)χp(α)p−s +O(p−1−δ),

for σ ≥ (7 + δ)/2. So in this half plane we can write

Lq(s; u) = L(s− 3, χ)l(s; u)
∏
p|q

{∑
n

S1,pn(u)p−ns
}
,

where χ is the Dirichlet character such that χ(p) = χp(α), and l(s; u) is
a Dirichlet series which is absolutely convergent for σ > 7/2. Hence the
above expression gives the analytic continuation of Lq(s; u) to the half
plane σ > 7/2. Also in this half plane

l(s; u)
∏
p|q

{∑
n

S1,pn(u)p−ns
}
�α d(q),

where d(q) denotes the number of divisors of q. The result now follows by
contour integration (Perron’s formula), and observing that L(s−3, χ) does
not have a pole at s = 4 as α is not a square. �

6. Bounds for the integral Iq,c(u)

In this section we investigate the integral

Iq,c(u) =
∫

R4
W (B−1(y))∆c(φ1(y))e[q,c](−u.y)dy,

which appears in Lemma 3.2. Recall that the function ∆c comes from the
smooth approximation for the δ-symbol. The smooth function w(t) involved
in the formula (Lemma 3.1) is taken to be an even function which vanishes
outside B/2 < |t| < B. Also it is such that w(j)(t) � B−j−1. So it follows
that

∆(j)
c (t)� (cB)−jB−1.

Using this bound and by integration-by-parts we obtain the following bound
for the integral.

Lemma 6.1. For u 6= 0, we have

Iq,c(u)� cB3
( [q, c]
c|u|

)N
,(6.1)

where the implied constant depends on N and on the form φ1.
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As a consequence we get that u with |u| > c−1[q, c]Bε will make a negligi-
ble contribution in our analysis of Tq(B). For u with 0 < |u| ≤ c−1[q, c]Bε
we need a more refined bound. The following result comes from a closer
study of the behaviour of the function ∆c, and is essentially due to Heath-
Brown [4]. The proof does not seem to simplify significantly in the special
case where φ1 is a diagonal quadratic form. Hence we opt to skip the proof
entirely. The interested reader may find the details in sections 4 - 8 of [4].
Note that in the notation used in [4] we have Iq,c(u) = cB2I∗r (v) with
r = cB−1 and v = c[q, c]−1u. Let q = q1q2 be a decomposition of q as a
product of two coprime integers, and suppose (q, c) = q1. Let c = q1t, then
Iq,q1t(u) = q1tB

2I∗r (v) with r = q1tB
−1 and v = q−1

2 u. Hence Iq,q1t(u) is a
differentiable function in t.

Lemma 6.2. For 0 < |u| ≤ qBε and q ≤ B, we have

Iq,q1t(u)� q2
1q2t

2|u|−1B1+ε, and
d

dt
Iq,q1t(u)� q2

1q2t|u|−1B1+ε,

where the implied constants depend on the form φ1 and on ε.

Remark. Here and after we are using the well accepted convention that
ε is an arbitrary positive number, not the same in each occurance and the
implied constants depend at least on ε among other parameters.

Finally for the zero frequency u = 0 we have the following result.

Lemma 6.3. We have

Iq,c(0)� cB2,(6.2)

where the implied constant depends only on φ1.

7. Proof of Proposition 2.1
Using the bound obtained in Lemma 6.1, we get

Tq(B) =
∞∑
c=1

∑
|u|≤c−1[c,q]Bε

c−1

[q, c]4
Sq,c(u)Iq,c(u) +O(1).

Let q = q1q2 be a decomposition of q as a product of two coprime integers.
Then for a u with φ̃1(u) 6= 0, consider the sum

J(u) =
∞∑
c=1

(c,q)=q1

c−1

[q, c]4
Sq,c(u)Iq,c(u).

Recall that, by our choice, the function ∆c vanishes unless 1 ≤ c < B.
Hence Iq,c(u) vanishes unless 1 ≤ c < B. Using the multiplicativity of the
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mixed exponential sum we get

J(u) = q−4
2 Sq2,1(u)

∑
c<B

(c,q)=q1

c−5Sq1,c(u)Iq,c(u).

An application of Lemmas 4.3, 5.1 and 6.2, gives

q−4
2 Sq2,1(u)

∑
C<c<2C
(c,q)=q1

c−5Sq1,c(u)Iq,c(u)� B1+ε

q
1/2
1 q2|u|

.

Hence it follows that

J(u)� B1+ε

q
1/2
1 q2|u|

.

We collect the contributions of those u for which φ̃1(u) 6= 0, and define

J∗ =
∑

|u|≤q2Bε
φ̃1(u) 6=0

J(u).

Our next lemma furnishes a satisfactory bound for the above sum.

Lemma 7.1. We have
J∗ � q

−1/2
1 q2

2B(qB)ε,
where the implied constant depends on the forms φi and on ε.

Proof. We have already shown above that

J∗ �
∑

|u|≤q2Bε
φ̃1(u) 6=0

B1+ε

q
1/2
1 q2|u|

.

Now ∑
0<|u|≤U

|u|−1 �
∑

1≤n≤U2

1√
n

∑
|u|2=n

1� U3+ε.

The lemma follows. �

Next we consider J(u) for u 6= 0 with φ̃1(u) = 0. In this case we use
Lemmas 5.2 and 6.2, together with partial summation to establish∑
C<c≤2C
(c,q)=q1

c−1

[q, c]4
Sq,c(u)Iq,c(u) = Sq2,1(u)q−1

1
q4

∑
C
q1
<n≤2 C

q1
(n,q2)=1

Iq,q1n(u)
n5 Sq1,q1n(u)

� q2
2q
−1
1
q4

q4
1q2BC

1/2

|u|
Bε = BC1/2

q|u|
Bε.
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This yields that for u 6= 0 with φ̃1(u) = 0, we have

J(u)� (q|u|)−1B3/2+ε.

Let
J∗∗ =

∑
0<|u|≤q2Bε
φ̃1(u)=0

J(u).

Lemma 7.2. We have
J∗∗ � q−1

1 B3/2(qB)ε,
where the implied constant depends on the forms φi and on ε.

Proof. From the above analysis it follows that

J∗∗ � B3/2+ε

q

∑
0<|u|≤q2Bε
φ̃1(u)=0

|u|−1.

We can evaluate the last sum by breaking it up into dyadic blocks∑
u

Ui<ui<2Ui
φ̃1(u)=0

|u|−1 � (maxUi)−1 ∑
u

Ui<ui<2Ui
φ̃1(u)=0

1� (maxUi)1+ε.

The lemma follows. �

It remains to consider the contribution of the zero frequency

J(0) =
∞∑
c=1

(c,q)=q1

c−1

[q, c]4
Sq,c(0)Iq,c(0).

Using multiplicativity we get
Sq,c(0) = Sq2,1(0)Sq1,c(0),

which, by Lemma 4.3, vanishes unless q2 = 1, i.e. q|c. So J(0) = 0 unless
q|c, in which case we have the following lemma.

Lemma 7.3. We have
J(0)� q−1B2+ε,

where the implied constant depends on the forms φi and on ε.

Proof. We have

J(0) =
∑
c<B
q|c

c−1

[q, c]4
Sq,c(0)Iq,c(0) =

∑
c<B
q|c

c−5Sq,c(0)Iq,c(0).
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Then using Corollary 4.3 and Lemma 6.3, we get that the above expression
is bounded by

B2+ε∑
c<B
q|c

c−1 � B2+ε

q
.

�

Now Proposition 2.1 follows from Lemmas 7.1, 7.2 and 7.3.
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