Computing fundamental domains for Fuchsian groups
Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 2, pp. 467-489.

We exhibit an algorithm to compute a Dirichlet domain for a Fuchsian group Γ with cofinite area. As a consequence, we compute the invariants of Γ, including an explicit finite presentation for Γ.

Nous présentons un algorithme pour calculer un domaine de Dirichlet pour un groupe Fuchsien Γ, avec aire cofinie. Comme conséquence, nous calculons les invariants de Γ, ainsi qu’une présentation finie explicite pour Γ.

DOI: 10.5802/jtnb.683
John Voight 1

1 Department of Mathematics and Statistics 16 Colchester Avenue University of Vermont Burlington, Vermont 05401-1455, USA
@article{JTNB_2009__21_2_467_0,
     author = {John Voight},
     title = {Computing fundamental domains  for {Fuchsian} groups},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {467--489},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {2},
     year = {2009},
     doi = {10.5802/jtnb.683},
     mrnumber = {2541438},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.683/}
}
TY  - JOUR
AU  - John Voight
TI  - Computing fundamental domains  for Fuchsian groups
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2009
DA  - 2009///
SP  - 467
EP  - 489
VL  - 21
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.683/
UR  - https://www.ams.org/mathscinet-getitem?mr=2541438
UR  - https://doi.org/10.5802/jtnb.683
DO  - 10.5802/jtnb.683
LA  - en
ID  - JTNB_2009__21_2_467_0
ER  - 
%0 Journal Article
%A John Voight
%T Computing fundamental domains  for Fuchsian groups
%J Journal de théorie des nombres de Bordeaux
%D 2009
%P 467-489
%V 21
%N 2
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.683
%R 10.5802/jtnb.683
%G en
%F JTNB_2009__21_2_467_0
John Voight. Computing fundamental domains  for Fuchsian groups. Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 2, pp. 467-489. doi : 10.5802/jtnb.683. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.683/

[1] M. Alsina and P. Bayer, Quaternion orders, quadratic forms, and Shimura curves. CRM monograph series, vol. 22, AMS, Providence, 2004. | MR | Zbl

[2] A. Beardon, The geometry of discrete groups. Grad. Texts in Math., vol. 91, Springer-Verlag, New York, 1995. | MR | Zbl

[3] H.-J. Boehm, The constructive reals as a Java library. J. Log. Algebr. Program. 64 (2005), 3–11. | MR | Zbl

[4] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language.. J. Symbolic Comput., 24 (3–4), 1997, 235–265. | MR | Zbl

[5] K. S. Brown, Cohomology of groups. Grad. Texts in Math., vol. 87, Springer-Verlag, New York, 1982. | MR | Zbl

[6] H. Cohen, A course in computational algebraic number theory. Grad. Texts in Math., vol. 138, Springer-Verlag, New York, 1993. | MR | Zbl

[7] H. Cohen, Advanced topics in computational algebraic number theory. Grad. Texts in Math., vol. 193, Springer-Verlag, Berlin, 2000. | MR | Zbl

[8] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 2nd ed. Undergrad. Texts in Math., Springer-Verlag, New York, 1997. | MR | Zbl

[9] T. Dokchitser, Computing special values of motivic L-functions. Experiment. Math. 13 (2004), no. 2, 137–149. | EuDML | MR | Zbl

[10] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp. 44 (1985), no. 170, 463–471. | MR | Zbl

[11] L. R. Ford, Automorphic functions, 2nd. ed. Chelsea, New York, 1972.

[12] I.M. Gel’fand, M.I. Graev, and I.I. Pyatetskii-Shapiro, Representation theory and automorphic functions. Trans. K.A. Hirsch, Generalized Functions, vol. 6, Academic Press, Boston, 1990. | MR | Zbl

[13] P. Gowland and D. Lester, A survey of exact computer arithmetic. In Computability and Complexity in Analysis, Lecture Notes in Computer Science, eds. Blanck et al., vol. 2064, Springer, 2001, 30–47. | Zbl

[14] M. Imbert, Calculs de présentations de groupes fuchsiens via les graphes rubanés. Expo. Math. 19 (2001), no. 3, 213–227. | MR | Zbl

[15] S. Johansson, On fundamental domains of arithmetic Fuchsian groups. Math. Comp 69 (2000), no. 229, 339–349. | MR | Zbl

[16] S. Katok, Fuchsian groups. Chicago Lect. in Math., U. of Chicago Press, Chicago, 1992. | MR | Zbl

[17] S. Katok, Reduction theory for Fuchsian groups. Math. Ann. 273 (1986), no. 3, 461–470. | MR | Zbl

[18] D. R. Kohel and H. A. Verrill, Fundamental domains for Shimura curves. Les XXIIèmes Journées Arithmetiques (Lille, 2001), J. Théor. Nombres Bordeaux 15 (2003), no. 1, 205–222. | Numdam | MR | Zbl

[19] M.B. Pour-El and J.I. Richards, Computability in analysis and physics. Perspect. in Math. Logic, Springer, Berlin, 1989. | MR | Zbl

[20] H. Shimizu, On zeta functions of quaternion algebras. Ann. of Math. (2) 81 (1965), 166–193. | MR | Zbl

[21] H. Verrill, Subgroups of PSL 2 (). Handbook of Magma Functions, eds. John Cannon and Wieb Bosma, Edition 2.14 (2007).

[22] M.-F. Vignéras, Arithmétique des algèbres de quaternions. Lect. Notes in Math., vol. 800, Springer, Berlin, 1980. | MR | Zbl

[23] J. Voight, Quadratic forms and quaternion algebras: algorithms and arithmetic. Ph.D. Thesis, University of California, Berkeley, 2005.

[24] K. Weihrauch, An introduction to computable analysis. Springer-Verlag, New York, 2000. | MR | Zbl

Cited by Sources: