We exhibit an algorithm to compute a Dirichlet domain for a Fuchsian group with cofinite area. As a consequence, we compute the invariants of , including an explicit finite presentation for .
Nous présentons un algorithme pour calculer un domaine de Dirichlet pour un groupe Fuchsien , avec aire cofinie. Comme conséquence, nous calculons les invariants de , ainsi qu’une présentation finie explicite pour .
@article{JTNB_2009__21_2_467_0, author = {John Voight}, title = {Computing fundamental domains for {Fuchsian} groups}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {467--489}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {2}, year = {2009}, doi = {10.5802/jtnb.683}, zbl = {pre05620663}, mrnumber = {2541438}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.683/} }
TY - JOUR TI - Computing fundamental domains for Fuchsian groups JO - Journal de Théorie des Nombres de Bordeaux PY - 2009 DA - 2009/// SP - 467 EP - 489 VL - 21 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.683/ UR - https://zbmath.org/?q=an%3Apre05620663 UR - https://www.ams.org/mathscinet-getitem?mr=2541438 UR - https://doi.org/10.5802/jtnb.683 DO - 10.5802/jtnb.683 LA - en ID - JTNB_2009__21_2_467_0 ER -
John Voight. Computing fundamental domains for Fuchsian groups. Journal de Théorie des Nombres de Bordeaux, Volume 21 (2009) no. 2, pp. 467-489. doi : 10.5802/jtnb.683. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.683/
[1] M. Alsina and P. Bayer, Quaternion orders, quadratic forms, and Shimura curves. CRM monograph series, vol. 22, AMS, Providence, 2004. | MR: 2038122 | Zbl: 1073.11040
[2] A. Beardon, The geometry of discrete groups. Grad. Texts in Math., vol. 91, Springer-Verlag, New York, 1995. | MR: 1393195 | Zbl: 0528.30001
[3] H.-J. Boehm, The constructive reals as a Java library. J. Log. Algebr. Program. 64 (2005), 3–11. | MR: 2137732 | Zbl: 1080.68005
[4] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language.. J. Symbolic Comput., 24 (3–4), 1997, 235–265. | MR: 1484478 | Zbl: 0898.68039
[5] K. S. Brown, Cohomology of groups. Grad. Texts in Math., vol. 87, Springer-Verlag, New York, 1982. | MR: 672956 | Zbl: 0584.20036
[6] H. Cohen, A course in computational algebraic number theory. Grad. Texts in Math., vol. 138, Springer-Verlag, New York, 1993. | MR: 1228206 | Zbl: 0786.11071
[7] H. Cohen, Advanced topics in computational algebraic number theory. Grad. Texts in Math., vol. 193, Springer-Verlag, Berlin, 2000. | MR: 1728313 | Zbl: 0977.11056
[8] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 2nd ed. Undergrad. Texts in Math., Springer-Verlag, New York, 1997. | MR: 1417938 | Zbl: 0861.13012
[9] T. Dokchitser, Computing special values of motivic -functions. Experiment. Math. 13 (2004), no. 2, 137–149. | EuDML: 54172 | MR: 2068888 | Zbl: 1139.11317
[10] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp. 44 (1985), no. 170, 463–471. | MR: 777278 | Zbl: 0556.10022
[11] L. R. Ford, Automorphic functions, 2nd. ed. Chelsea, New York, 1972.
[12] I.M. Gel’fand, M.I. Graev, and I.I. Pyatetskii-Shapiro, Representation theory and automorphic functions. Trans. K.A. Hirsch, Generalized Functions, vol. 6, Academic Press, Boston, 1990. | MR: 1071179 | Zbl: 0718.11022
[13] P. Gowland and D. Lester, A survey of exact computer arithmetic. In Computability and Complexity in Analysis, Lecture Notes in Computer Science, eds. Blanck et al., vol. 2064, Springer, 2001, 30–47. | Zbl: 0985.65043
[14] M. Imbert, Calculs de présentations de groupes fuchsiens via les graphes rubanés. Expo. Math. 19 (2001), no. 3, 213–227. | MR: 1852073 | Zbl: 0988.20035
[15] S. Johansson, On fundamental domains of arithmetic Fuchsian groups. Math. Comp 69 (2000), no. 229, 339–349. | MR: 1665958 | Zbl: 0937.11016
[16] S. Katok, Fuchsian groups. Chicago Lect. in Math., U. of Chicago Press, Chicago, 1992. | MR: 1177168 | Zbl: 0753.30001
[17] S. Katok, Reduction theory for Fuchsian groups. Math. Ann. 273 (1986), no. 3, 461–470. | MR: 824433 | Zbl: 0561.30036
[18] D. R. Kohel and H. A. Verrill, Fundamental domains for Shimura curves. Les XXIIèmes Journées Arithmetiques (Lille, 2001), J. Théor. Nombres Bordeaux 15 (2003), no. 1, 205–222. | Numdam | MR: 2019012 | Zbl: 1044.11052
[19] M.B. Pour-El and J.I. Richards, Computability in analysis and physics. Perspect. in Math. Logic, Springer, Berlin, 1989. | MR: 1005942 | Zbl: 0678.03027
[20] H. Shimizu, On zeta functions of quaternion algebras. Ann. of Math. (2) 81 (1965), 166–193. | MR: 171771 | Zbl: 0201.37903
[21] H. Verrill, Subgroups of . Handbook of Magma Functions, eds. John Cannon and Wieb Bosma, Edition 2.14 (2007).
[22] M.-F. Vignéras, Arithmétique des algèbres de quaternions. Lect. Notes in Math., vol. 800, Springer, Berlin, 1980. | MR: 580949 | Zbl: 0422.12008
[23] J. Voight, Quadratic forms and quaternion algebras: algorithms and arithmetic. Ph.D. Thesis, University of California, Berkeley, 2005.
[24] K. Weihrauch, An introduction to computable analysis. Springer-Verlag, New York, 2000. | MR: 1795407 | Zbl: 0956.68056
Cited by Sources: