In recent years, starting with the paper [B-D-S], we have investigated the possibility of characterizing countable subgroups of the torus by subsets of . Here we consider new types of subgroups: let be a Kronecker set (a compact set on which every continuous function can be uniformly approximated by characters of ), and the group generated by . We prove (Theorem 1) that can be characterized by a subset of (instead of a subset of ). If is finite, Theorem 1 implies our earlier result in [B-S]. We also prove (Theorem 2) that if is uncountable, then cannot be characterized by a subset of (or an integer sequence) in the sense of [B-D-S].
Ces dernières années, depuis l’article [B-D-S], nous avons étudié la possibilité de caratériser les sous-groupes dénombrables du tore par des sous-ensembles de . Nous considérons ici de nouveaux types de sous-groupes : soit un ensemble de Kronecker (un ensemble compact sur lequel toute fonction continue peut être approchée uniformément par des caractéres de ) et le groupe engendré par . Nous prouvons (théorème 1) que peut être caractérisé par un sous-ensemble de (au lieu d’un sous-ensemble de ). Si est fini, le théorème 1 implique notre résultat antérieur de [B-S]. Nous montrons également (théorème 2) que si est dénombrable alors ne peut pas être caractérisé par un sous-ensemble de (ou une suite d’entiers) au sens de [B-D-S].
@article{JTNB_2007__19_3_567_0, author = {Andr\'as Bir\'o}, title = {Characterizations of groups generated by {Kronecker} sets}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {567--582}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {3}, year = {2007}, doi = {10.5802/jtnb.603}, zbl = {1159.11022}, mrnumber = {2388789}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.603/} }
TY - JOUR TI - Characterizations of groups generated by Kronecker sets JO - Journal de Théorie des Nombres de Bordeaux PY - 2007 DA - 2007/// SP - 567 EP - 582 VL - 19 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.603/ UR - https://zbmath.org/?q=an%3A1159.11022 UR - https://www.ams.org/mathscinet-getitem?mr=2388789 UR - https://doi.org/10.5802/jtnb.603 DO - 10.5802/jtnb.603 LA - en ID - JTNB_2007__19_3_567_0 ER -
András Biró. Characterizations of groups generated by Kronecker sets. Journal de Théorie des Nombres de Bordeaux, Volume 19 (2007) no. 3, pp. 567-582. doi : 10.5802/jtnb.603. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.603/
[A-N] J. Aaronson, M. Nadkarni, eigenvalues and spectra of no-singular transformations. Proc. London Math. Soc. (3) 55 (1987), 538–570. | MR: 907232 | Zbl: 0636.28010
[B] M. Beiglbock, Strong characterizing sequences of countable groups. Preprint, 2003 | MR: 2362430 | Zbl: pre05231958
[B-D-S] A. Biró, J-M. Deshouillers, V.T. Sós, Good approximation and characterization of subgroups of R/Z. Studia Sci. Math. Hung. 38 (2001), 97–113. | MR: 1877772 | Zbl: 1006.11038
[B-S] A. Biró, V.T. Sós, Strong characterizing sequences in simultaneous diophantine approximation. J. of Number Theory 99 (2003), 405–414. | MR: 1968461 | Zbl: 1058.11047
[B-S-W] M. Beiglbock, C. Steineder, R. Winkler, Sequences and filters of characters characterizing subgroups of compact abelian groups. Preprint, 2004 | MR: 2227021 | Zbl: 1091.22001
[Bi1] A. Biró, Characterizing sets for subgroups of compact groups I.: a special case. Preprint, 2004
[Bi2] A. Biró, Characterizing sets for subgroups of compact groups II.: the general case. Preprint, 2004
[D-K] D. Dikranjan, K. Kunen, Characterizing Subgroups of Compact Abelian Groups. Preprint 2004 | Zbl: 1109.22002
[D-M-T] D. Dikranjan, C. Milan, A. Tonolo, A characterization of the maximally almost periodic Abelian groups. J. Pure Appl. Alg., to appear. | Zbl: 1065.22003
[E] E. Effros, Transformation groups and -algebras. Ann. of Math. 81 (1965), 38–55. | MR: 174987 | Zbl: 0152.33203
[H-M-P] B. Host, J.-F. Mela, F. Parreau, Non singular transformations and spectral analysis of measures. Bull. Soc. Math. France 119 (1991), 33–90. | Numdam | MR: 1101939 | Zbl: 0748.43001
[L-P] L. Lindahl, F. Poulsen, Thin sets in harmonic analysis. Marcel Dekker, 1971 | MR: 393993 | Zbl: 0226.43006
[N] M.G. Nadkarni, Spectral Theory of Dynamical Systems. Birkhauser, 1998 | MR: 1719722 | Zbl: 0921.28009
[V] N.Th. Varopoulos, Groups of continuous functions in harmonic analysis. Acta Math. 125 (1970), 109–154. | MR: 282155 | Zbl: 0214.38102
Cited by Sources: