On sum-sets and product-sets of complex numbers
Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 3, pp. 921-924.

We give a simple argument that for any finite set of complex numbers A, the size of the the sum-set, A+A, or the product-set, A·A, is always large.

On donne une preuve simple que pour tout ensemble fini de nombres complexes A, la taille de l’ensemble de sommes A+A ou celle de l’ensemble de produits A·A est toujours grande.

DOI: 10.5802/jtnb.527

József Solymosi 1

1 Department of Mathematics, University of British Columbia 1984 Mathematics Road, Vancouver, Colombie-Britannique, Canada V6T 1Z2
@article{JTNB_2005__17_3_921_0,
     author = {J\'ozsef Solymosi},
     title = {On sum-sets and product-sets of complex numbers},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {921--924},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {3},
     year = {2005},
     doi = {10.5802/jtnb.527},
     mrnumber = {2212132},
     zbl = {05016594},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.527/}
}
TY  - JOUR
AU  - József Solymosi
TI  - On sum-sets and product-sets of complex numbers
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2005
SP  - 921
EP  - 924
VL  - 17
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.527/
DO  - 10.5802/jtnb.527
LA  - en
ID  - JTNB_2005__17_3_921_0
ER  - 
%0 Journal Article
%A József Solymosi
%T On sum-sets and product-sets of complex numbers
%J Journal de théorie des nombres de Bordeaux
%D 2005
%P 921-924
%V 17
%N 3
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.527/
%R 10.5802/jtnb.527
%G en
%F JTNB_2005__17_3_921_0
József Solymosi. On sum-sets and product-sets of complex numbers. Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 3, pp. 921-924. doi : 10.5802/jtnb.527. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.527/

[1] J. Bourgain,S. Konjagin, Estimates for the number of sums and products and for exponential sums over subgrups in finite fields of prime order. C. R. Acad. Sci. Paris 337 (2003), no. 2, 75–80. | MR | Zbl

[2] J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications. Geometric And Functional Analysis GAFA 14 (2004), no. 1, 27–57. | MR | Zbl

[3] M. Chang, A sum-product estimate in algebraic division algebras over R. Israel Journal of Mathematics (to appear).

[4] M. Chang, Factorization in generalized arithmetic progressions and applications to the Erdős-Szemerédi sum-product problems. Geometric And Functional Analysis GAFA 13 (2003), no. 4, 720–736. | MR | Zbl

[5] M. Chang, Erdős-Szemerédi sum-product problem. Annals of Math. 157 (2003), 939–957. | MR | Zbl

[6] Gy. Elekes, On the number of sums and products. Acta Arithmetica 81 (1997), 365–367. | MR | Zbl

[7] P. Erdős, E. Szemerédi, On sums and products of integers. In: Studies in Pure Mathematics; To the memory of Paul Turán. P.Erdős, L.Alpár, and G.Halász, editors. Akadémiai Kiadó – Birkhauser Verlag, Budapest – Basel-Boston, Mass. 1983, 213–218. | MR | Zbl

[8] K. Ford, Sums and products from a finite set of real numbers. Ramanujan Journal, 2 (1998), (1-2), 59–66. | MR | Zbl

[9] M. B. Nathanson, On sums and products of integers. Proc. Am. Math. Soc. 125 (1997), (1-2), 9–16. | MR | Zbl

Cited by Sources: