We give a simple argument that for any finite set of complex numbers , the size of the the sum-set, , or the product-set, , is always large.
On donne une preuve simple que pour tout ensemble fini de nombres complexes , la taille de l’ensemble de sommes ou celle de l’ensemble de produits est toujours grande.
@article{JTNB_2005__17_3_921_0, author = {J\'ozsef Solymosi}, title = {On sum-sets and product-sets of complex numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {921--924}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {3}, year = {2005}, doi = {10.5802/jtnb.527}, mrnumber = {2212132}, zbl = {05016594}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.527/} }
TY - JOUR AU - József Solymosi TI - On sum-sets and product-sets of complex numbers JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 921 EP - 924 VL - 17 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.527/ DO - 10.5802/jtnb.527 LA - en ID - JTNB_2005__17_3_921_0 ER -
%0 Journal Article %A József Solymosi %T On sum-sets and product-sets of complex numbers %J Journal de théorie des nombres de Bordeaux %D 2005 %P 921-924 %V 17 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.527/ %R 10.5802/jtnb.527 %G en %F JTNB_2005__17_3_921_0
József Solymosi. On sum-sets and product-sets of complex numbers. Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 3, pp. 921-924. doi : 10.5802/jtnb.527. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.527/
[1] J. Bourgain,S. Konjagin, Estimates for the number of sums and products and for exponential sums over subgrups in finite fields of prime order. C. R. Acad. Sci. Paris 337 (2003), no. 2, 75–80. | MR | Zbl
[2] J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications. Geometric And Functional Analysis GAFA 14 (2004), no. 1, 27–57. | MR | Zbl
[3] M. Chang, A sum-product estimate in algebraic division algebras over R. Israel Journal of Mathematics (to appear).
[4] M. Chang, Factorization in generalized arithmetic progressions and applications to the Erdős-Szemerédi sum-product problems. Geometric And Functional Analysis GAFA 13 (2003), no. 4, 720–736. | MR | Zbl
[5] M. Chang, Erdős-Szemerédi sum-product problem. Annals of Math. 157 (2003), 939–957. | MR | Zbl
[6] Gy. Elekes, On the number of sums and products. Acta Arithmetica 81 (1997), 365–367. | MR | Zbl
[7] P. Erdős, E. Szemerédi, On sums and products of integers. In: Studies in Pure Mathematics; To the memory of Paul Turán. P.Erdős, L.Alpár, and G.Halász, editors. Akadémiai Kiadó – Birkhauser Verlag, Budapest – Basel-Boston, Mass. 1983, 213–218. | MR | Zbl
[8] K. Ford, Sums and products from a finite set of real numbers. Ramanujan Journal, 2 (1998), (1-2), 59–66. | MR | Zbl
[9] M. B. Nathanson, On sums and products of integers. Proc. Am. Math. Soc. 125 (1997), (1-2), 9–16. | MR | Zbl
Cited by Sources: