On the exceptional set of Lagrange’s equation with three prime and one almost–prime variables
Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 3, pp. 925-948.

We consider an approximation to the popular conjecture about representations of integers as sums of four squares of prime numbers.

Nous considérons une version affaiblie de la conjecture sur la représentation des entiers comme somme de quatre carrés de nombres premiers.

Published online:
DOI: 10.5802/jtnb.528
Doychin Tolev 1

1 Department of Mathematics Plovdiv University “P. Hilendarski" 24 “Tsar Asen" str. Plovdiv 4000, Bulgaria
@article{JTNB_2005__17_3_925_0,
     author = {Doychin Tolev},
     title = {On the exceptional set of {Lagrange{\textquoteright}s} equation with three prime and one almost{\textendash}prime variables},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {925--948},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {3},
     year = {2005},
     doi = {10.5802/jtnb.528},
     zbl = {05016595},
     mrnumber = {2212133},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.528/}
}
TY  - JOUR
TI  - On the exceptional set of Lagrange’s equation with three prime and one almost–prime variables
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
DA  - 2005///
SP  - 925
EP  - 948
VL  - 17
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.528/
UR  - https://zbmath.org/?q=an%3A05016595
UR  - https://www.ams.org/mathscinet-getitem?mr=2212133
UR  - https://doi.org/10.5802/jtnb.528
DO  - 10.5802/jtnb.528
LA  - en
ID  - JTNB_2005__17_3_925_0
ER  - 
%0 Journal Article
%T On the exceptional set of Lagrange’s equation with three prime and one almost–prime variables
%J Journal de Théorie des Nombres de Bordeaux
%D 2005
%P 925-948
%V 17
%N 3
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.528
%R 10.5802/jtnb.528
%G en
%F JTNB_2005__17_3_925_0
Doychin Tolev. On the exceptional set of Lagrange’s equation with three prime and one almost–prime variables. Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 3, pp. 925-948. doi : 10.5802/jtnb.528. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.528/

[1] C. Bauer, M.-C. Liu, T. Zhan, On a sum of three prime squares. J. Number Theory 85 (2000), 336–359. | MR: 1802721 | Zbl: 0961.11034

[2] J. Brüdern, E. Fouvry, Lagrange’s Four Squares Theorem with almost prime variables. J. Reine Angew. Math. 454 (1994), 59–96. | MR: 1288679 | Zbl: 0809.11060

[3] G. Greaves, On the representation of a number in the form x 2 +y 2 +p 2 +q 2 where p and q are odd primes. Acta Arith. 29 (1976), 257–274. | MR: 404182 | Zbl: 0283.10030

[4] H. Halberstam, H.-E. Richert, Sieve methods. Academic Press, 1974. | MR: 424730 | Zbl: 0298.10026

[5] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers. Fifth ed., Oxford Univ. Press, 1979. | MR: 568909 | Zbl: 0423.10001

[6] G. Harman, A. V. Kumchev, On sums of squares of primes. Math. Proc. Cambridge Philos. Soc., to appear. | MR: 2197572 | Zbl: 05012459

[7] D.R. Heath-Brown, Cubic forms in ten variables. Proc. London Math. Soc. 47 (1983), 225–257. | MR: 703978 | Zbl: 0494.10012

[8] D.R. Heath-Brown, D.I.Tolev, Lagrange’s four squares theorem with one prime and three almost–prime variables. J. Reine Angew. Math. 558 (2003), 159–224. | MR: 1979185 | Zbl: 1022.11050

[9] L.K. Hua, Some results in the additive prime number theory. Quart. J. Math. Oxford 9 (1938), 68–80. | Zbl: 0018.29404

[10] L.K. Hua, Introduction to number theory. Springer, 1982. | MR: 665428 | Zbl: 0483.10001

[11] L.K. Hua, Additive theory of prime numbers. American Mathematical Society, Providence, 1965. | MR: 194404 | Zbl: 0192.39304

[12] H. Iwaniec, Rosser’s sieve. Acta Arith. 36 (1980), 171–202. | MR: 581917 | Zbl: 0435.10029

[13] H. Iwaniec, A new form of the error term in the linear sieve. Acta Arith. 37 (1980), 307–320. | MR: 598883 | Zbl: 0444.10038

[14] H.D. Kloosterman, On the representation of numbers in the form ax 2 +by 2 +cz 2 +dt 2 . Acta Math. 49 (1926), 407–464.

[15] J. Liu, On Lagrange’s theorem with prime variables. Quart. J. Math. Oxford, 54 (2003), 453–462. | MR: 2031178 | Zbl: 1080.11071

[16] J. Liu, M.-C. Liu, The exceptional set in the four prime squares problem. Illinois J. Math. 44 (2000), 272–293. | MR: 1775322 | Zbl: 0942.11044

[17] J.Liu, T. D. Wooley, G. Yu, The quadratic Waring–Goldbach problem. J. Number Theory, 107 (2004), 298–321. | MR: 2072391 | Zbl: 1056.11055

[18] V.A. Plaksin, An asymptotic formula for the number of solutions of a nonlinear equation for prime numbers. Math. USSR Izv. 18 (1982), 275–348. | Zbl: 0482.10045

[19] P. Shields, Some applications of the sieve methods in number theory. Thesis, University of Wales 1979.

[20] D.I. Tolev, Additive problems with prime numbers of special type. Acta Arith. 96, (2000), 53–88. | MR: 1812750 | Zbl: 0972.11096

[21] D.I. Tolev, Lagrange’s four squares theorem with variables of special type. Proceedings of the Session in analytic number theory and Diophantine equations, Bonner Math. Schriften, Bonn, 360 (2003). | MR: 2075638 | Zbl: 1060.11061

[22] T.D. Wooley, Slim exceptional sets for sums of four squares, Proc. London Math. Soc. (3), 85 (2002), 1–21. | MR: 1901366 | Zbl: 1039.11066

Cited by Sources: